Modifications of expression of genes and proteins involved in DNA repair and nitric oxide metabolism by carbatonides [disodium-2,6-dimethyl-1,4-dihydropyridine-3,5-bis(carbonyloxyacetate) derivatives] in intact and diabetic rats
Kristīne Ošiņa
Institute of Biology of the University of Latvia, Salaspils, Latvia; Latvian Institute of Organic Synthesis, Riga, Latvia
Elina Leonova
Sergejs Isajevs
Larisa Baumane
Evita Rostoka
Tatjana Sjakste
Egils Bisenieks
Gunars Duburs
Brigita Vigante
Nikolajs Sjakste


1,4-dihydropyridine derivatives
diabetes mellitus
4-dihydropyridine derivatives
DNA damage
free radical scavengers
nitric oxide synthases


Studies on the pathogenesis of diabetes mellitus complications indicate that the compounds reducing free radicals and enhancing DNA repair could be prospective as possible remedies. Carbatonides, the disodium-2,6-dimethyl-1,4-dihydropyridine-3,5-bis(carbonyloxyacetate) derivatives, were tested for these properties. EPR spectroscopy showed that metcarbatone was an effective scavenger of hydroxyl radicals produced in the Fenton reaction, etcarbatone, and propcarbatone were less effective, styrylcarbatone was ineffective. UV/VIS spectroscopy revealed that styrylcarbatone manifested a hyperchromic effect when interacting with DNA, while all other carbatonides showeda hypochromic effect. Rats with streptozotocin induced type 1 DM were treated with metcarbatone, etcarbatone or styrylcarbatone (all compounds at doses 0.05 mg kg-1 or 0.5 mg kg-1) nine days after the DM approval. Gene expression levels in kidneys and blood were evaluated by quantitative RT-PCR; protein expression - immunohistochemically in kidneys, heart, sciatic nerve, and eyes; DNA breakage - by comet assay in nucleated blood cells. Induction of DM induced DNA breaks; metcarbatone and styrylcarbatone (low dose) alleviated this effect. Metcarbatone and etcarbatone up-regulated mRNA and protein of eNOS in kidneys of diabetic animals; etcarbatone also in myocardium. Etcarbatone reduced the expression of increased iNOS protein in myocardium, nerve, and kidneys. iNos gene expression was up-regulated in kidneys by etcarbatone and metcarbatone in diabetic animals. In blood, development of DM increased iNos gene expression; etcarbatone and metcarbatone normalised it. Etcarbatone up-regulated the expression of H2AX in kidneys of diabetic animals but decreased the production of c-PARP1. Taken together, our data indicate that carbatonides might have a potential as drugs intended to treat DM complications.



Chen X, Tang J, Xie W, Wang J, Jin J, Ren J, et al. Protective effect of the polysaccharide from Ophiopogon japonicus on streptozotocin-induced diabetic rats. Carbohydr Polym. 2013;94(1):378-85. DOI: 10.1016/j.carbpol.2013.01.037.

Fu H, Li G, Liu C, Li J, Wang X, Cheng L, et al. Probucol prevents atrial remodeling by inhibiting oxidative stress and TNF-α/NF-κB/TGF-β signal transduction pathway in alloxan-induced diabetic rabbits. J Cardiovasc Electrophysiol. 2015;26(2):211-22. DOI: 10.1111/jce.12540.

Drígelová M, Tarabová B, Duburs G, Lacinová L. The dihydropyridine analogue cerebrocrast blocks both T-type and L-type calcium currents. Can J Physiol Pharmacol. 2009;87(11):923-32. DOI: 10.1139/y09-086.

Velena A, Zarkovic N, Gall Troselj K, Bisenieks E, Krauze A, Poikans J, et al. 1,4-Dihydropyridine derivatives: dihydronicotinamide analogues-model compounds targeting oxidative stress. Oxid Med Cell Longev. 2016;2016:1892412. DOI: 10.1155/2016/1892412.

Fernandes MA, Pereira SP, Jurado AS, Custódio JB, Santos MS, Moreno AJ, et al. Comparative effects of three 1,4-dihydropyridine derivatives [OSI-1210, OSI-1211 (etaftoron), and OSI-3802] on rat liver mitochondrial bioenergetics and on the physical properties of membrane lipid bilayers: relevance to the length of the alkoxyl chain in positions 3 and 5 of the DHP ring. Chem Biol Interact. 2008;173(3):195-204. DOI: 10.1016/j.cbi.2008.03.001.

Briede J, Stivrina M, Stoldere D, Vigante B, Duburs G. Effect of cerebrocrast on body and organ weights, food and water intake, and urine output of normal rats. Cell Biochem Funct. 2008;26(8): 908-15. DOI: 10.1002/cbf.1525.

Briede J, Stivriņa M, Stoldere D, Bisenieks E, Uldriķis J, Poikāns J, et al. Effect of new and known 1,4-dihydropyridine derivatives on blood glucose levels in normal and streptozotocin-induced diabetic rats. Cell Biochem. Funct. 2004;22(4):219-24. DOI: 10.1002/cbf.1091.

Briede J, Stivrina M, Stoldere D, Vigante B, Duburs G. Effect of cerebrocrast, a new long-acting compound on blood glucose and insulin levels in rats when administered before and after STZ-induced diabetes mellitus. Cell Biochem Funct. 2007;25(6):673-80. DOI: 10.1002/cbf.1372.

Briede J, Stivrina M, Vigante B, Stoldere D, Duburs G. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart. Cell Biochem Funct. 2008;26(2):238-45. DOI: 10.1002/cbf.1442.

Leonova E, Sokolovska J, Boucher JL, Isajevs S, Rostoka E, Baumane L, et al. New 1,4-dihydropyridines down-regulate nitric oxide in animals with streptozotocin-induced diabetes mellitus and protect deoxyribonucleic against peroxynitrite action. Basic Clin Pharmacol Toxicol. 2016;119(1):19-31. DOI: 10.1111/bcpt.12542.

Ryabokon NI, Goncharova RI, Duburs G, Rzeszowska-Wolny J. A 1,4-dihydropyridine derivative reduces DNA damage and stimulates DNA repair in human cells in vitro. Mutat Res. 2005;587(1-2):52-8. DOI: 10.1016/j.mrgentox.2005.07.009.

Buraka E, Chen CY, Gavare M, Grube M, Makarenkova G, Nikolajeva V, et al. DNA-binding studies of AV-153, an antimutagenic and DNA repair-stimulating derivative of 1,4-dihydropiridine. Chem Biol Interact. 2014;220:200-7. DOI: 10.1016/j.cbi.2014.06.027.

Ošiņa K, Rostoka E, Isajevs S, Sokolovska J, Sjakste T, Sjakste N. Effects of an Antimutagenic 1,4-Dihydropyridine AV-153 on Expression of Nitric Oxide Synthases and DNA Repair-related Enzymes and Genes in Kidneys of Rats with a Streptozotocin Model of Diabetes Mellitus. Basic Clin. Pharmacol. Toxicol. 2016;119(5):458-63. DOI: 10.1111/bcpt.12617.

Ošiņa K, Rostoka E, Sokolovska J, Paramonova N, Bisenieks E, Duburs G, et al. 1,4-Dihydropyridine derivatives without Ca2+-antagonist activity up-regulate Psma6 mRNA expression in kidneys of intact and diabetic rats. Cell Biochem Funct. 2016;34:3-6. DOI: 10.1002/cbf.3160.

Chen W, Feng L, Huang Z, Su H. Hispidin produced from Phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation. Chem Biol Interact. 2012;199(3):137-42. DOI: 10.1016/j.cbi.2012.07.001.

Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206-21.

Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1(1):23-9.

Na N, Zhao DQ, Li H, Jiang N, Wen JY, Liu HY. DNA binding, photonuclease activity and human serum albumin interaction of a water-soluble freebase carboxyl corrole. Molecules. 2015;21(1):pii:E54. DOI: 10.3390/molecules21010054.

Tsai YC, Wang YH, Liou CC, Lin YC, Huang H, Liu YC. Induction of oxidative DNA damage by flavonoids of propolis: its mechanism and implication about antioxidant capacity. Chem Res Toxicol. 2012;25(1):191-6. DOI: 10.1021/tx200418k.

Takahashi T, Harris RC. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice. J Diabetes Res. 2014;2014:590541. DOI: 10.1155/2014/590541.

Roe ND, Ren J. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vascul Pharmacol. 2012;57(5-6):168-72. DOI: 10.1016/j.vph.2012.02.004.

Liu B, Kuang L, Liu J. Bariatric surgery relieves type 2 diabetes and modulates inflammatory factors and coronary endothelium eNOS/iNOS expression in db/db mice. Can J Physiol Pharmacol. 2014;92(1):70-7. DOI: 10.1139/cjpp-2013-0034.

Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213-23. DOI: 10.1111/j.1476-5381.2010.01196.x.

Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol. 2015;14:75. DOI: 10.1186/s12933-015-0237-9.

Mattila JT, Thomas AC. Nitric oxide synthase: non-canonical expression patterns. Front Immunol. 2014;5:478. DOI: 10.3389/fimmu.2014.00478.

Zhang L, Dong L, Liu X, Jiang Y, Zhang L, Zhang X, et al. α-Melanocyte-stimulating hormone protects retinal vascular endothelial cells from oxidative stress and apoptosis in a rat model of diabetes. PLoS One. 2014;9(4):e93433. DOI: 10.1371/journal.pone.0093433.

Chen YL, Chen KH, Yin TC, Huang TH, Yuen CM, Chung SY, et al. Extracorporeal shock wave therapy effectively prevented diabetic neuropathy. Am J Transl Res. 2015;7(12):2543-60. PubMed PMID: 26885256.

Huang CC, Lai CJ, Tsai MH, Wu YC, Chen KT, Jou MJ, et al. Effects of melatonin on the nitric oxide system and protein nitration in the hypobaric hypoxic rat hippocampus. BMC Neurosci. 2015;16:61. DOI: 10.1186/s12868-015-0199-6.

Lu QB, Feng XM, Tong N, Sun HJ, Ding L, Wang YJ, et al. Neuronal and endothelial nitric oxide synthases in the paraventricular nucleus modulate sympathetic overdrive in insulin-resistant rats. PLoS One. 2015;10(10):e0140762. DOI: 10.1371/journal.pone.0140762.

Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A, Abrahani A, et al. Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1. J Mol Cell Cardiol. 2012;53(5):677-86. DOI: 10.1016/j.yjmcc.2012.08.013.

Martínez AC, Hernández M, Novella S, Martínez MP, Pagán RM, Hermenegildo C, et al. Diminished neurogenic femoral artery vasoconstrictor response in a Zucker obese rat model: differential regulation of NOS and COX derivatives. PLoS One. 2014;9(9):e106372. DOI: 10.1371/journal.pone.0106372.

Ahad A, Mujeeb M, Ahsan H, Siddiqui WA. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie. 2014;106:101-10. DOI: 10.1016/j.biochi.2014.08.006.

Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010;23(2):75-93. DOI: 10.1016/j.niox.2010.04.007.

Casper I, Nowag S, Koch K, Hubrich T, Bollmann F, Henke J, et al. Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP). Nitric Oxide. 2013;33:6-17. DOI: 10.1016/j.niox.2013.05.002.

Perrotta I, Brunelli E, Sciangula A, Conforti F, Perrotta E, Tripepi S, et al. iNOS induction and PARP-1 activation in human atherosclerotic lesions: an immunohistochemical and ultrastructural approach. Cardiovasc Pathol. 2011;20(4):195-203. DOI: 10.1016/j.carpath.2010.06.002.

Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol. 2015;225(3):R83-99. DOI: 10.1530/JOE-14-0662.

Kuo LJ, Yang LX. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008;22(3):305-9. PubMed PMID: 18610740.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.