Radioactivity of soil in Croatia I: naturally occurring decay chains

  • Marko Šoštarić Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Branko Petrinec Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Mak Avdić Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Ljerka Petroci Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Milica Kovačić Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Željka Zgorelec University of Zagreb Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia
  • Božena Skoko Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Tomislav Bituh Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Jasminka Senčar Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Gina Branica Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Zdenko Franić Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Iva Franulović Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Davor Rašeta Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Ivan Bešlić Institute for Medical Research and Occupational Health, Zagreb, Croatia
  • Dinko Babić IMI
Keywords: 210Pb, 222Rn, 226Ra, 232Th, 238U, gamma radiation, high-resolution gamma-ray spectrometry, representative radionuclides

Abstract

The assessment of environmental radioactivity much relies on radionuclide content in soil. This stems from the significant contribution of soil to both external and internal exposure to ionising radiation via direct emission of gamma radiation and soil-to-plant radionuclide transfer, respectively. This motivated us to carry out a systematic research on the radioactivity of soil in Croatia to obtain relevant data that can be used as a basis for understanding the related effects of geomorphological, biogeographical, and climatological properties of the environment. We collected samples of the surface layer of uncultivated soil (0–10 cm) at 138 sites from all over the country and measured them for radionuclide activity concentrations by means of high-resolution gamma-ray spectrometry. This resulted in radioactivity maps containing data on activity concentrations of representative radionuclides in the environment. In this paper, which is the first in our two-part presentation, we focus on the naturally occurring 232Th and 238U decay chains and their correlations with the diversity of Croatian regions. For both of the chains, activity concentrations were the highest in the Dinaric region, the lowest in the Pannonian region, and intermediate in the Adriatic region. Relatively high concentrations of 226Ra in the soil of the Dinaric region implied a possibility of an enhanced emanation of its progeny 222Rn into the air. Activity concentrations of 210Pb were additionally elevated in areas with dense vegetation, most probably due to an atmospheric deposition of airborne 210Pb onto the surface of plants and their eventual decomposition on the ground.

Published
2021-01-18
How to Cite
1.
Šoštarić M, Petrinec B, Avdić M, Petroci L, Kovačić M, Zgorelec Željka, Skoko B, Bituh T, Senčar J, Branica G, Franić Z, Franulović I, Rašeta D, Bešlić I, Babić D. Radioactivity of soil in Croatia I: naturally occurring decay chains. Arh Hig Rada Toksikol [Internet]. 2021Jan.18 [cited 2022Aug.14];72(1). Available from: https://arhiv.imi.hr/index.php/arhiv/article/view/1293
Section
Original article

Most read articles by the same author(s)