The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals

Authors

  • Ante Miličević Institute for Medical Research and Occupational Health, Zagreb

DOI:

https://doi.org/10.2478/aiht-2019-70-3290

Keywords:

DFT, oxidation potential, PM6, polyphenols, radical scavenging

Abstract

I have shown that by averaging antioxidant activity (AA) values measured by different methods it is possible to obtain an excellent correlation (R2=0.960) between the first electrochemical oxidation potential, Ep1, and AA. Separate correlations using the AA values obtained with each of the four methods [R2 were 0.599 for diphenyl-1-picrylhydrazyl (DPPH), 0.884 for Folin Ciocalteu reagent (FCR), 0.953 for the ferric-reducing ability of plasma (FRAP), and 0.719 for the Trolox equivalent antioxidant capacity (TEAC)] were all worse, and in some cases not useful at all, such as the one for DPPH. Also, the sum of atomic orbital spin populations on the carbon atoms in the skeleton of radicals (AOSPRad), calculated with the semi-empirical parameterisation method 6 (PM6) in water, was used to correlate both Ep1 and AA, yielding R2=0.926 and 0.950, respectively. This showed to be a much better variable for the estimation of Ep1 and AA than the bond dissociation energy (BDE), R2=0.854 and 0.901 for Ep1 and AA, respectively, and especially the ionisation potential (IP), R2=0.445 and 0.435 for Ep1 and AA, respectively.

References

Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992;339:1523-6. doi: 10.1016/0140-6736(92)91277-F

Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 2008;33:2416-26. doi: 10.1007/s11064-008-9697-6

Plaza M, Batista ÂG, Cazarin CBB, Sandahl M, Turner C, Östman E, Maróstica Júnior MR. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: a pilot clinical study. Food Chem 2016;211:185-97. doi: 10.1016/j.foodchem.2016.04.142

Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 2013;68:125-31. doi: 10.1016/j.phrs.2012.10.018

Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013;45:2821-31. doi: 10.1016/j.biocel.2013.10.004

Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 2011;41:1346-59. doi: 10.1111/j.1365-2222.2011.03773.x

Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015;64: 872–883. doi: 10.1136/gutjnl-2014-307142

Chen M-L, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu J-D, Zhang Q-Y, Mi M-T. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. MBio 2016;7:e02210-15. doi: 10.1128/mBio.02210-15

Yang B, Kotani A, Arai K, Kusu F. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Anal Sci 2001;17:599-604. doi: 10.2116/analsci.17.599

Hotta H, Nagano S, Ueda M, Tsujino Y, Koyama J, Osakai T. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim Biophys Acta 2002;1572:123-32. doi: 10.1016/S0304-4165(02)00285-4

Komorsky-Lovrić Š, Jovanović IN. Abrasive stripping square wave voltammetry of some natural antioxidants. Int J Electrochem Sci 2016;11:836-42.

Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 1997;22:749-60. doi: 10.1016/S0891-5849(96)00351-6

Chen ZY, Chan PT, Ho KY, Fung KP, Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids 1996;79:157-63. doi: 10.1016/0009-3084(96)02523-6

Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 1990;186:343-55. doi: 10.1016/0076-6879(90)86128-I

Miličević A, Novak Jovanović I, Miletić GI. Changes in electronic structures of flavonoids upon electrochemical oxidation and a theoretical model for the estimation of the first oxidation potential. Electrochim Acta 2018;284:742-50. doi: 10.1016/j.electacta.2018.07.202

Novak Jovanović I, Miličević A. A Model for the estimation of oxidation potentials of polyphenols. J Mol Liq 2017;241:255-9. doi: 10.1016/j.molliq.2017.06.017

Novak Jovanović I, Miličević A. A new, simplified model for the estimation of polyphenol oxidation potentials based on the number of OH groups. Arh Hig Rada Toksikol 2017;68:93-8. doi: 10.1515/aiht-2017-68-2988

Kongpichitchoke T, Hsu J-L, Huang T-C. Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies. J Agric Food Chem 2015;63:4580-6. doi: 10.1021/acs.jafc.5b00312

van Acker SABE, de Groot MJ, van den Berg D-J, Tromp MNJL, den Kelder GD-O, van der Vijgh WJF, Bast A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem Res Toxicol 1996;9:1305-12. doi: 10.1021/tx9600964

Arteaga JF, Ruiz-Montoya M, Palma A, Alonso-Garrido G, Pintado S, Rodríguez-Mellado JM. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules 2012;17:5126-38. doi: 10.3390/molecules17055126

Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 2009;113:1226-33. doi: 10.1016/j.foodchem.2008.08.013

Zhang D, Chu L, Liu Y, Wang A, Ji B, Wu W, Zhou F, Wei Y, Cheng Q, Cai S, Xie L, Jia G. Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J Agric Food Chem 2011;59:10277-85. doi: 10.1021/jf201773q

Stewart JJP. MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA (2016) [displayed 16 January 2019]. Available at HTTP://OpenMOPAC.net

Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090f

Foti MC. Use and abuse of the DPPH• radical. J Agric Food Chem 2015;63:8765-76. doi: 10.1021/acs.jafc.5b03839

Amić A, Marković Z, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D. Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms. Food Chem 2014;152:578-85. doi: 10.1016/j.foodchem.2013.12.025

de Souza GLC, de Oliveira LMF, Vicari RG, Brown A. A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1→3) linkage flavonols. J. Mol. Model. 2016;22:100-108. doi: 10.1007/s00894-016-2961-9

Downloads

Published

30.05.2019

Issue

Section

Original article

How to Cite

1.
The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals. Arh Hig Rada Toksikol [Internet]. 2019 May 30 [cited 2025 Jan. 22];70(2). Available from: https://arhiv.imi.hr/index.php/arhiv/article/view/1132

Most read articles by the same author(s)