Surveillance of bacterial colonisation on contact surfaces in different medical wards

  • Karmen Godič Torkar Department for Sanitary Engineering, Faculty of Health Sciences, University of Ljubljana, Ljubljana
  • Sanja Ivić Department for Sanitary Engineering, Faculty of Health Sciences, University of Ljubljana, Ljubljana
Keywords: antibiotic susceptibility, medical wards, bacterial contamination, Surfaces, hospitals, antibiotic susceptibility., surfaces

Abstract

This study was conducted to determine the bacterial colonization of some bacterial groups, including extended–spectrum β-lactamase (ESBLs) producers and methicillin-resistant Staphylococcus aureus (MRSA), on surfaces of the equipment and instruments in patient rooms and other workspaces in three different medical wards. The number of microorganisms on swabs was determined with the colony count method on selective microbiological mediums. The aerobic mesophylic microorganisms were found in 73.5 % out of 102 samples, with the average and maximum values of 2.6 × 102 and 4.6 × 103 colony forming units (CFU) 100 cm-2, respectively. Members of the family Enterobacteriaceae, coagulase positive staphylococci, coagulase-negative staphylococci, and enterococci were detected in 23.4, 31.4, 53.2, and 2.9 % of samples, respectively. The differences in bacterial counts on the surfaces of the psychiatric, oncological, and paediatric wards were statistically significant (P<0.001). About 40 % out of 19 isolates from the family Enterobacteriaceae showed multiple resistance to three or more different groups of tested antibiotics, while ESBL was confirmed for only one strain. Staphylococci isolates were mostly resistant to penicillin. MRSA was confirmed in 5.2 % of the tested S. aureus isolates. Greater attention should be paid to cleaning and the appropriate choice of disinfectants, especially in the psychiatric ward. Employees should be informed about the prevention of the spreading of nosocomial infections. Routine application of rapid methods for hygiene control of surfaces is highly recommended.

References

Aly NY, Al-Mousa HH, Al Asar el SM. Nosocomial infections in a medical–surgical intensive care unit. Med Princ Pract 2008;17:373–7. doi: 10.1159/000141500.

Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14:933–51. doi: 10.1128/CMR.14.4.933-951.2001.

Judge C, Galvin S, Burke L, Thomas T, Humphreys H, Fitzgerald-Hughes D. Search and you will find: detecting extended-spectrum β-lactamase-producing Klebsiella pneumoniae from a patient's immediate environment. Infection Control and Hosp Epidem 2013;34:534–6. doi: 10.1086/670206.

Steinberg JP, Denham ME, Zimring C, Kasali A, Hall KK, Jacob JT. The role of the hospital environment in the prevention of healthcare-associated infections by contact transmission. HERD 2013;7:46–73.

Kampf G, Kramer A. Epidemiologic Background of Hand Hygiene and Evaluation of the Most Important Agents for Scrubs and Rubs. Clin Microb Rev 17, 863–893 (2004), http://doi.org/10.1128/CMR.17.4.863-893.2004.

Microbiology of food and animal feeding stuffs -- Horizontal methods for sampling techniques from surfaces using contact plates and swabs, ISO 18593:2004, International Organization for Standardization, 2004, pp. 8.

Microbiology of the food chain -- Horizontal method for the enumeration of microorganisms -- Part 1: Colony count at 30 degrees C by the pour plate technique ISO 4833-1:2013, International Organization for Standardization, 2013, pp. 9.

Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) —Part 2:Technique using rabbit plasma fibrinogen agar medium, ISO 6888-2:1999, International Organization for Standardization, 1999, pp. 7.

Merck Microbiology Manual, Merck, 12 th eddition, p. 187, 190, 276, 308, 341, 346, 350, 363, 387, 401–402 (2012). Available from: https://www.scribd.com/doc/94454909/Merck-Microbiology-Manual-12th (31.07.2016).

Microbiology of food and animal feeding stuffs -- Horizontal methods for the detection and enumeration of Enterobacteriaceae -- Part 2: Colony-count method ISO 21528-2:2004, International Organization for Standardization 2004, pp. 10.

CLSI. Performance standards for antimicrobial susceptibility testing. Twenty-fifth international supplement M100-S25. Clinical and Laboratory Standards Institute, Wayne (PA), 2015. Available from: http://www.ssu.ac.ir/cms/fileadmin/user_upload/Moavenatha/MDarman/omuor_azmayeshgahha/CLSI_2015.pdf vol 35 no 3 M100 .s25 (31.08. 2016).

Queipo-Ortuño MI, Colmenero J De D, Macias M, Bravo MJ, Morata P. Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an Inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin Vaccine Immunol 2008;15:293–6. doi: 10.1128/CVI.00270-07.

Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 2007;59:321–2. doi: 10.1093/jac/dkl481.

Woodford N. Rapid characterization of β-lactamases by multiplex PCR. Methods Mol Biol 642, 181–192. doi: 10.1007/978-1-60327-279-7_14. In: Gillespie SH, McHugh TD. (eds): Antibiotic reistance protocols, Humana Press, Springer Protocols, London, UK 2010:181–92.

The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0 2016;6. Available from: http://www.eucast.org." http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf (16. 8. 2016).

Marples RR, Richardson JF, Newton FE. Staphylococci as part of the normal flora of human skin. In: Jones D, Board RG, Sussman M. (eds.): J Appl Bacteriol Symp Suppl Series 19: Staphylococci. Blackwell Scientific Publications, Oxford 1990, 69:93S–99S.

Otter JA, Yezli S, French GL. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol 2011;2:687–99. doi: 10.1086/660363.

Neely A, Maley MP. Survival of Enterococci and Staphylococci on hospital fabrics and plastic. J Clin Microbiol 2000;8:724–6. 0095-1137/00/$04.00.

Lemmen SW, Häfner H, Zolldann D, Stanzel S, Lütticken R. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment. J Hospital Infect 2004;6:191–7. doi: 10.1016/j.jhin.2003.12.004.

Vomš S, Malik K. Razkuževanje prostorov z aerosoli v UKC. (Desinfection of the rooms in medical wards by aerosols in University Clinical Centre Ljubljana). Aktualno 2015;2:10–1. Available from: http://www3.kclj.si (18.8.2016).

Brady RRW, Kalima P, Damani NN, Wilson RG, Dunlop MG. Bacterial contamination of hospital bed-control handsets in a surgical setting: A potential marker of contamination of the healthcare environment. Ann Roy Coll Surg Engl 2007;9:656–60. doi: 10.1308/003588407X209347.

John LD. Nosocomial infections and bath water: any cause for concern? Clin Nurse Spec 2006;20:119–23.

De Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiology 2014;14:118, pp.10. doi:10.1186/1471-2180-14-118.

Noskin GA, Stosor V, Cooper I, Peterson LR. Recovery of vancomycin-resistant enterococci on fingertips and environmental surfaces. Infect Control Hosp Epidemiol 1995;6:577–81.

Dessì A, Puddu M, Testa M, Marcialis MA, Pintus MC, Fanos V. Serratia marcescens infections and outbreaks in neonatal intensive care units. J Chemother 2009;21:493–9. doi: 10.1179/joc.2009.21.5.493.

Ivanova D, Markovska R, Hadjieva N, Schneider I, Mitov I, Bauernfeind A. Extended-spectrum β-lactamase-producing Serratia marcescens outbreak in a Bulgarian hospital. J Hosp Infect 2008;70:60–5. doi: 10.1016/j.jhin.2008.04.033.

Hauser AR. Antibiotic basics for clinicians. The ABCs of choosing the right antibacterial agent. Chapter 11, Gram-negative bacteria. 2nd edition, Lippincott Williams & Wilkins 2012;121–8. Available from: https://www.inkling.com/read/antibiotic-basics-for-clinicians-alan-hauser-2nd/chapter-11/ (1. 8. 2016).

Arnold MS, Dempsey JM, Fishman M, McAuley PJ, Tibert C, Vallande NC. The best hospital practices for controlling methicillin-resistant Staphylococcus aureus on the cutting edge. Infect Cont Hosp Epidemiol 2002;3:69–75. doi: 10.1086/502009.

Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microb Rev 2011;24:755–91. Available from: http://doi.org/10.1128/CMR.00017-11 (10. 8. 2016).

Choi SH, Lee JE, Park SJ, Kim MN, Choo EJ, Kwak YG, Jeong JY, Woo JH, Kim NJ, Kim YS. Prevalence, microbiology, and clinical characteristics of extended-spectrum β-lactamase-producing Enterobacter spp., Serratia marcescens, Citrobacter freundii, and Morganella morganii in Korea. Eur J Clin Microbiol Infect Dis 2007;26:557–61. doi: 10.1007/s10096-007-0308-2.

Eckert C, Gautier V, Arlet G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother 2006;7:14–23. doi: 10.1093/jac/dki398.

Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009;22:161–82. doi: 10.1128/CMR.00036-08.

Yum JH, Yong D, Lee K, Kim HS, Chong Y. A new integron carrying VIM-2 metallo-β-lactamase gene cassette in a Serratia marcescens isolate. Diagn Microbiol Infect Dis 2002;42:217–9.

Heller I, Grif K, Orth D. Emergence of VIM-1-carbapenemase-producing Enterobacter cloacae in Tyrol, Austria. J Med Microb 2012;61:567–71. doi: 10.1099/jmm.0.038646-0.

Becker K, Heilmann C, Peters G. Coagulase-negative Staphylococci. Clin Microbiol Rev 2014;27:870–926. doi: 10.1128/CMR.00109-13.

Norton TD, Skeete F, Dubrovskaya Y, Phillips MS, Bosco 3rd JD, Mehta SH. Orthopedic surgical site infections: analysis of causative bacteria and implications for antibiotic stewardship. Am J Orthop 2014;43:E89–E92.

Shittu A, Lin J, Morrison, D, Kolawole D. Identification and molecular characterization of mannitol salt positive, coagulase-negative staphylococci from nasal samples of medical personnel and students. J Med Microbiol 2006;55:317–26. doi: 10.1099/jmm.0.46072-0.

Švent-Kučina N, Pirš M, Kofol R, Blagus R, Smrke D, Bilban M, Seme K. Molecular characterization of Staphylococcus aureus isolates from skin and soft tissue infections samples and healthy carriers in the Central Slovenia region. APMIS 2016;124:309–18. doi: 10.1111/apm.12509.

Higuchi W, Hirokazu I, Iwao Y, Dohmae S, Saito K, Takano T, Otsuka T, Baranovich T, Endo C, Suzuki N, Tomiyama Y, Yamamoto T. Extensive multidrug resistance of coagulase-negative staphylococci in medical students. J Inf Chem 2007;13:63–6. doi: 10.1099/jmm.0.46072-0.

Kaase M, Lenga S, Friedrich S, Szabados F, Sakinc T, Kleine B, Gatermann SG. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin Microb Inf 2008;14:614–6. doi: 10.1111/j.1469-0691.2008.01997.x.

Papanicolas LE, Bell JM, Bastian I. Performance of phenotypic tests for detection of penicillinase in Staphylococcus aureus isolates from Australia. J Clin Microbiol 2014;52:1136–38. doi: 10.1128/JCM.03068-13.

Published
2017-05-08
How to Cite
1.
Godič Torkar K, Ivić S. Surveillance of bacterial colonisation on contact surfaces in different medical wards. Arh Hig Rada Toksikol [Internet]. 2017May8 [cited 2024Apr.16];68(2). Available from: https://arhiv.imi.hr/index.php/arhiv/article/view/645
Section
Original article