The influence of shear stress on the adhesion capacity of Legionella pneumophila

  • Martina Oder University of Ljubljana, Faculty of Health Sciences
  • Rok Fink University of Ljubljana, Faculty of Health Sciences
  • Klemen Bohinc University of Ljubljana, Faculty of Health Sciences
  • Karmen Godič Torkar University of Ljubljana, Faculty of Health Sciences
Keywords: bacterial growth, Legionella pneumophila, flow chamber, adhesion, laminar flow, shear stress, turbulent flow

Abstract

Bacterial adhesion is a complex process influenced by many factors, including hydrodynamic conditions. They affect the transfer of oxygen, nutrients, and bacterial cells in a water supply and cooling systems. The aim of this study was to identify hydrodynamic effects on bacterial adhesion to and detachment from stainless steel surfaces. For this purpose we observed the behaviour of bacterium L. pneumophila in no-flow and laminar and turbulent flow conditions simulated in a fluid flow chamber. The bacterial growth in no-flow and laminar flow conditions was almost identical in the first 24 h, while at 48 and 72 h of incubation, the laminar flow stimulated bacterial growth. In the second part of this study we found that laminar flow accelerated bacterial adhesion in the first 48 h, but after 72 h the amount of bacterial cells exposed to the flow dropped, probably due to detachment. In the third part we found that the turbulent flow detached more bacterial cells than the laminar, which indicates that the strength of shear forces determines the rate of bacterial removal.

References

Fliermans CB, Cherry WB, Orrison LH, Smith SJ, Tison DL, Pope SH. Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 1981;41:9-16.

Surman-Lee S, Fields B, Hornei B, Ewig S, Exner M, Tartakovsky I, Lajoie L, Dangendorf F, Bentham R, Cabanes PA, Fourrier P, Trouvet T, Wallet F. Ecology and environmental sources of Legionella. In: Bartram J, Chartier Y, Lee JV, Pond K, Surman-Lee S, editors. Legionella and the prevention of legionellosis. 1st ed. WHO Library Cataloguing-in-Publication Data, WHO Press; 2007. p. 29-38.

Heng BH, Goh KT, Ng DL, Ling AE. Surveillance of legionellosis and Legionella bacteria in the built environment in Singapore. Ann Acad Med Singapore 1997;6:557-65.

Den Boer JW, Yzerman EPF, Schellekens J, Lettinga KD, Boshuizen, HC, Van Steenbergen JE, Bosman A, Van den Hof S, Van Vliet HA, Peeters MF, Van Ketel RJ, Speelman P, Kool JL, Van Spaendonck MAEC. A large outbreak of Legionnaires’ disease at a Dutch flower show. Emerg Infect Dis. 2002;8:37-43

Greig JE, Carnie JA, Tallis GF, Ryan NJ, Tan AG, Gordon IR, Zwolak B, Leydon JA, Guest CS, Hart WG. An outbreak of Legionnaires’ disease at the Melbourne Aquarium, April 2000: investigation and case–control studies. Med J Australia 2004;180:566-72.

Kuchta JM, States SJ, McGlaughlin JE, Overmeyer JH, Wadowsky RM, McNamara AM, Wolford RS, Yee RB. Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium passaged strains. Appl Environ Microbiol 1985;50:21-6.

Allison DG. The biofilm matrix. Biofouling 2003;19:139-50.

Yang L, Liu Y, Wu H, Song Z, Hoiby N, Molin S, Givskov M. Combating biofilms. FEMS Immunol Med Mic 2012;65:146-157.

Rendueles O, Ghigo JM. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 2012;36:972-89.

Shi X, Zhu X. Biofilm formation and food safety in food industries. Trends Food Sci Tech 2009;4:407-13.

Flach J, Grzybowski V, Toniazzo G, Corção G. Adhesion and production of degrading enzymes by bacteria isolated from biofilms in raw milk cooling tanks. Food Sci. Technol. 2014;34:571-6.

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318-22.

Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358: 135-8.

Coquet L, Cosette P, Junter GA, Beucher E, Saiter JM, Jouenne T. Adhesion of Yersinia ruckeri to fish farm materials: influence of cell and material surface properties. Colloids Surf B 2002;26:373-8.

Teixeira P, Silva S, Araújo F, Azeredo J, Oliveira R. In: Mendez-Vilas A editor. Bacterial adhesion to food contacting surfaces. Topics and Trends in Applied Microbiology. 1st ed. Formatex, Portugal; 2007. p. 13-20.

Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microb 1994;60:1842-51.

Türetgen I, Cotuk A. Monitoring of Biofilm-associated Legionella pneumophila on Different Substrata in Model Cooling Tower System. Environ Monit Assess 2007;125:271-9.

Moritz MM, Flemming H, Wingender J. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Envir Heal 2010;213:190-7.

Vickery K, Pajkos A, Cossart Y. Removal of biofilm from endoscopes: Evaluation of detergent efficiency. Am J Infect Control 2004;32:170-6.

Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater 2004;8:37-57.

Di Bonaventura G, Piccolomini R, Paludi D, D’Orio V. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 2008;104:1552-61.

Simões LC, Simões M, Oliveira R, Vieira MJ. Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Micro 2007;47:174-83.

Liu Y, Tay JH. Metabolic response of biofilm to shear stress in fixed-film culture. J Appl Microbiol 2001;90:337-42.

Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM. Structural deformation of bacterial biofilms caused by short term fluctuations in flow velocity: an in-situ demonstration of biofilm viscoelasticity. Biotechnol Bioeng 1999;65:83-92.

Joseph C, Lee J, van Wijngaarden J, Drasar V, Castellani-Pastoris M. European Guidelines for the control and prevention of travel associated legionnaires' disease. Health and Consumer Protection: EWGLI – EC DG 2001; p.1-66.

Winn WC Jr. Legionnaires disease: Historical Perspective. Clin Microbiol Rev 1988;1: 60-81.

Brenner DJ, Feeley JC, Weaver RE. Family VIII Legionellaceae. In: Krieg NR, Holt JG, editors. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Williams and Wilkins, Baltimore, MD; 1984. p. 210-36.

ISO 11731:1998. Water quality – Detection and enumeration of Legionella.

Helmenz PC, editor. Principles of Colloid and Surface Chemistry. 1st ed. New York (NY): Marcel Dekker; 1977.

Bohinc K, Dražič G, Fink R, Oder M, Jevšnik M, Nipič D, Godič Torkar K, Raspor P. Available surface dictates microbial adhesion capacity. Int J Adhes Adhes 2014;50:65-272.

Kurinčič M, Jeršek B, Klančnik A, Smole Možina S, Fink R, Dražić G, Raspor P, Bohinc K. Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential. Arh Hig Rada Toksikol 2016;67:37-43.

Fink R, Oder M, Rangus D, Raspor P, Bohinc K. Microbial adhesion capacity. Influence of Shear and Temperature Stress. Int J Environ Heal R 2014;25:656-69.

Van Loosdrecht MCM, Picioreanu C, Heijnen JJ. A more unifying hypothesis for biofilm structures. FEMS Microb Ecol 1997;24:181-3.

Choi YC, Morgenroth E. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol 2003; 47,5:69-76.

Rosenberg M, Kjelleberg S. Hydrophobic interactions in bacterial adhesion. In: Marshal KC, editor. Advances in Microbial Ecology. 1st ed. Springer Science Busines Media, New York: 1986. p. 353-93.

Corpe W. Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC, editors. Adsorption of microorganisms to surfaces Springer, 1980. p. 105-44.

Teodósio JS, Simões M, Melo LF, Mergulhão FJ. Flow cell hydrodynamics and their effects on E.coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling J Bioadh Biof Res 2011;27:1-11.

Liu Y, Li J. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media. Environ Sci Technol 2008;42:443-9.

Bakker DP, van der Mats A, Verkerke GJ, Busscher HJ, van der Mei HC. Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces. Appl Environ Microbiol 2003;69:6280-7.

Böl M, Möhle RB, Haesner M, Neu TR, Horn H, Krull R. 3D Finite element model of biofilm detachment using real biofilm structure from CLSM data. Biotechnol Bioeng 2009;103:177-86.

Published
2017-05-19
How to Cite
1.
Oder M, Fink R, Bohinc K, Godič Torkar K. The influence of shear stress on the adhesion capacity of Legionella pneumophila. Arh Hig Rada Toksikol [Internet]. 2017May19 [cited 2024Mar.28];68(2). Available from: https://arhiv.imi.hr/index.php/arhiv/article/view/667
Section
Original article