Urine tropenol ester levels in workers handling tiotropium bromide synthesis: implications for exposure prevention and biomonitoring

  • Axel Muttray Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz
  • Michael Schneider Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz
  • Bernd Roßbach Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz
Keywords: anticholinergic agents, intermediates, prevention, scopine ester, workplace analysis

Abstract

Tropenol ester is a highly toxic anticholinergic substance and an intermediate used in industrial production of the bronchodilator tiotropium bromide. The aim of this study was to systematically test workers involved in its production for tropenol ester in urine to identify any exposure pathways and define additional preventive measures. Twelve workers performing tasks involving potential exposure to tropenol ester were repeatedly monitored at the end of each production cycle. Medical exams revealed no symptoms of acute poisoning with tropenol ester, but biological monitoring of urine showed 36 positive findings in 79 samples, with tropenol ester concentrations ranging between the detection limit of 54 pg/mL and 2160 pg/mL. We managed to establish the cause of only one positive finding, which was a hole in a protective glove, whereas the rest most likely occurred due to human error. Because of this, the plant decided to modify the production process by replacing tropenol ester with a safer intermediate. While it is the safest course of action, there where it cannot be taken, biological monitoring can be very helpful in raising awareness about exposure to toxic substances, including the new ones that have not been studied for their adverse potential.

References

Muttray A, Geißler B, Letzel S. Kollaborierende Roboter – eine Herausforderung auch für den Betriebsarzt [Collaborative robots – a challenge for the company doctor, in German]. Arbeitsmed Sozialmed Umweltmed 2012;33:591–7.

Palmen NGM, Verbist KJM. Prioritization of new and emerging chemical risks for workers and follow-up actions. RIVM Report 2015–0091 [displayed 28 March 2019]. Available at http://rivm.openrepository.com/rivm/bitstream/10029/559415/3/2015-0091.pdf

European Agency for Safety and Health at Work: Brun E. Expert Forecast on Emerging Chemical Risks Related to Occupational Safety and Health, 2009 [displayed 28 March 2019]. Available at https://osha.europa.eu/en/tools-and-publications/publications/reports/TE3008390ENC_chemical_risks

Muttray A, Schneider M, Letzel S. Intoxication with a tropenol ester. Occup Med (Lond) 2012;62:305–7. doi: 10.1093/occmed/kqs032

Li J, Liu KK. Synthetic approaches to the 2002 new drugs. Mini Rev Med Chem 2004;4:207–33. doi: 10.2174/1389557043487457

Muttray A, Maier W, Vogt T, Demuth W, Konietzko J. Enzephalopathie nach Intoxikation mit einem Anticholinergikum [Encephalopathy after intoxication with an anticholinergic substance, in German]. Dtsch Med Wochenschr 1994;119:731–4. doi: 10.1055/s-2008-1058754

Ippen H. Comment on: Enzephalopathie nach Intoxikation mit einem Anticholinergikum [Encephalopathy following poisoning with an anticholinergic agent, in German]. Dtsch Med Wochenschr 1994;119:1803. PMID: 7736940

Bader M, Barr D, Göen Th, Schaller KH, Scherer G, Angerer J. Reliability criteria for analytical methods. In: Angerer J, Hartwig A, editors. The MAK-collection for occupational health and safety Part IV: Biomonitoring methods. Vol. 12, 2010 [displayed 28 March 2019]. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/3527600418.bireliabe0012

Wagner M. Biomonitoring in der betriebsärztlichen Praxis [Biomonitoring in occupational medicine, in German]. Zbl Arbeitsmed 2016;66:266–71. doi: 10.1007/s40664-016-0133-5

Rumack BH, Lovejoy FH. Clinical toxicology. In: Klaasen CD, Amdur MO, Doull J, editors. Casarett and Doull’s Toxicology. New York: Macmillan Publishing Company; 1986. p. 879–901.

Kromhout H, Hoek F, Uitterhoeve R, Huijbers R, Overmars RF, Anzion R, Vermeulen R. Postulating a dermal pathway for exposure to anti-neoplastic drugs among hospital workers. Applying a conceptual model to the results of three workplace surveys. Ann Occup Hyg 2000;44:551–60. doi: 10.1016/S0003-4878(00)00050-8

Boiano JM, Steege AL, Sweeney MH. Adherence to safe handling guidelines by health care workers who administer antineoplastic drugs. J Occup Environ Hyg 2014;11:728–40. doi: 10.1080/15459624.2014.916809

Lauwerys RR, Hoet P. Introduction. Definition and objectives of biological monitoring of exposure to industrial chemicals. In: Lauwerys RR, Hoet P, editors. Industrial chemical exposure: guidelines for biological monitoring. Boca Raton: CRC Press; 2001. p. 1–19.

Grando SA, Kawashima K, Kirkpatrick CJ, Kummer W, Wessler I. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system. Int Immunopharmacol 2015;29:1–7. doi: 10.1016/j.intimp.2015.08.023

Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017;134:1–21. doi: 10.1016/j.jphs.2017.05.002

Muttray A, Scharnbacher J. Bedeutung der Arbeitsplatzanalyse für die Begutachtung und Prävention am Beispiel einer chronischen Bleiintoxikation [Importance of workplace analysis for assessment and prevention: an example of chronic lead poisioning, in German]. Arbeitsmed Sozialmed Umweltmed 2008;43:618–21.

Published
2019-05-14
How to Cite
1.
Muttray A, Schneider M, Roßbach B. Urine tropenol ester levels in workers handling tiotropium bromide synthesis: implications for exposure prevention and biomonitoring. Arh Hig Rada Toksikol [Internet]. 2019May14 [cited 2024Apr.19];70(2). Available from: https://arhiv.imi.hr/index.php/arhiv/article/view/1039
Section
Original article