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The aim of this study was to establish the fractionation of copper and zinc in a small apple orchard using 
the revised (four-step) Bureau Communautaire de Référence (BCR) sequential extraction procedure and 
assess their potential mobility in soil. Soil samples were collected at the depth of 10 cm to 25 cm, sixteen 
from the orchard and fi ve control samples from a meadow located some 200 m away from the orchard. As 
the distribution of trace-element concentrations in the control samples was normal, they were used for 
comparison as background levels. We also determined soil mineralogical composition, carbonate content, 
soil pH, cation exchange capacity, and soil organic matter. The extraction yields of Cu and Zn from the 
control soil were lower than from the orchard soil (25 % vs. 34 %  and 47 % vs. 52 %, respectively), which 
pointed to natural processes behind metal bonding in the control soil and greater infl uence of man-made 
activities in the orchard soil. Compared to control, the orchard soil had signifi cantly higher concentrations 
of total Cu (P=0.0009), possibly due to the application of Cu-based fungicides. This assumption was 
further supported by greater speciation variability of Cu than of zinc, which points to different origins of 
the two, Cu from pesticides and Zn from the parent bedrock. Copper levels signifi cantly better (P=0.01) 
correlated with the oxidisable fraction of the orchard soil than of control soil. Residual and organically 
bound copper and zinc constituted the most important fractions in the studied soils. However, the use of 
Cu-based fungicides in the apple orchard did not impose environmental and health risk from Cu 
exposure.
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Agricultural soil is a well-studied environmental 
compartment, since intensive land use has been 
associated with inputs of soil amendments and 
agrochemicals (1-3) and the risk of element 
accumulation at phytotoxic levels. Even though copper 
is one of the seven micronutrients (Zn, Cu, Mn, Fe, 
B, Mo, Cl) essential for normal plant growth (4), its 
excessive use in chemicals such as fungicidal sprays 

to control weeds and pests may adversely affect 
benefi cial soil organisms and ultimately the entire 
agroecosystem. Therefore, much attention has been 
given to Cu behaviour in vineyard and orchard soils 
in terms of long-term or intensive use of agricultural 
chemicals containing this element (5-8). It is now 
widely recognised that micronutrient uptake by crops 
correlates with extractable fractions of the element in 
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soils (4). Oreščanin et al. (9) found a twofold increase 
in Cu content in vineyard soil compared to the 
background level, most of it in exchangeable form 
which highly correlated with Cu content in grapes, 
most likely due to absorption from soil. More and 
more authors claim to be able to predict copper 
phytotoxicity from extractable Cu concentrations in 
soils (10-14). A number of single and multi-step 
extraction protocols have been developed to estimate 
the fraction of a micronutrient or contaminant that is 
bioavailable in the short term (15, 16). In order to 
harmonise methodology throughout the European 
Union so that the analytical results could be comparable, 
the Community Bureau of Référence (BCR) invented 
a simple, three-stage sequential extraction protocol 
for speciation or fractionation of trace elements in 
sediment and soil samples (17). The protocol was later 
revised to include one more stage (18, 19).

The aim of this study was to apply this revised 
BCR protocol in order to assess the potential mobility 
of pollutants in soil. This procedure is designed so that 
reagents release metals associated with specifi c soil 
phases: acid soluble, reducible, oxidisable, and 
residual. The fi rst, acid soluble phase is presumed to 
be the most mobile, and therefor phytoavailable 
fraction.

Our second objective was to assemble a new set 
of data on the physicochemical forms of elements in 
an apple orchard classified between organic and 
conventional in terms of agricultural practices to see 
how it fi ts into the general belief - prevailing over the 
past few decades - that organically grown fruit is 
healthier and safer for consumption.

MATERIALS AND METHODS

Study area

For this study we selected a typical, small orchard 
(with an area of about 3750 m2) with dense apple tree 
arrangement, situated in the village of Bukevje, which 
is being intensively urbanised due to the near vicinity 
of the town of Velika Gorica and the city of Zagreb 
(Croatia). The orchard owner is a small apple producer, 
who has been applying pesticides for years, but at rates 
substantially lower than those used for commercial 
fruit production, i.e. up to fi ve to six sprays a year. 
These include copper oxychloride- and dithiocarbamate-
based fungicides, which contain Cu and Zn, 

respectively. The apples are sprayed lightly using hand 
lances from hand-operated pumps. Otherwise, there 
are no major sources of pollution in the close vicinity 
of the study area.

Geological description

The study area is part of the Western Pannonian 
plain, situated in the north-west of Croatia and 
delimited by the hilly area of Vukomeričke Gorice to 
the southwest and the Sava River and its tributaries to 
the north, west and east. Its lithology is determined 
by the Sava River deposits, composed of the 
Quaternary sand and gravel complex in the form of 
three floodplain terraces. The last time the Sava 
fl ooded this area was in September 2010. The terrace 
consists of clastic sediments, varying from gravels to 
sands, and of sandy and silty clays. The gravel pebbles 
are mostly carbonate, then sandstone, chert, igneous 
rocks, metamorphic rocks, and quartz (20). According 
to Pavlović et al. (21), the Sava sediments are 
composed of low-lying carbonates and overlying 
silicates as a result of the intense erosive action of 
melting glaciers exerted on limestones and dolomites 
in the alpine region, followed by local inputs mainly 
of silicate composition. This heterogeneity of the 
parent material has resulted in a wide variety of soil 
types, but the prevailing soils are hydromorphic, 
including Molic and Calcaric Fluvisols, Eutric 
Cambisols, and Eutric and Calcic Greysols (2).

Sampling and analytical methods

Sixteen soil samples were collected from the apple 
orchard with a shovel as follows: a) nine samples from 
nine apple rows (one per row, across the orchard) at 
a distance of 10 cm to 15 cm from the apple tree trunk 
at a depth of 10 cm to 25 cm (after removing the layer 
of organic debris; this depth is common in geochemical 
mapping); b) seven samples were collected from 
between adjacent rows, also at the depth of 10 cm to 
25 cm. We did that with the assumption that the apple 
row samples would be more affected by agrochemicals 
than samples from in between rows. Five control 
samples were taken in the same way from an adjacent 
meadow, some 200 m away. To our knowledge, the 
meadow had not received any artifi cial inputs of Cu, 
thus representing the local background metal levels.

Mineral composition was determined using a 
Philips PW 3040/60 X’Pert PRO powder X-ray 
diffractometer (PANalytical; Almelo, The Netherlands) 
with a CuKα line (λ=1.54055 Å) at 40 kV and 40 mA. 
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To identify phyllosilicates, the samples were 
additionally treated in ethyleneglycol vapour for 24 h 
and heated at 400 °C and 550 °C for 30 min.

Cation exchange capacity (CEC) was determined 
by mixing the samples with the 0.01 mol L-1 solution 
of copper ethylenediamine complex [Cu(en)2]

2+ (22). 
The subsequent change in Cu2+ concentration due to 
sample adsorption was determined with a ultraviolet-
visible spectrophotometer Hach DR/4000 U (Hach 
Company, Loveland, CO, USA) at 548 nm. The pH 
of the [Cu(en)2]

2+ solution upon mixing with each 
sample was around 7. Soil pH was measured in 
H2O.

Carbonate content was determined gravimetrically 
by weight loss after leaching the samples with 1 mol 
L-1 HCl.

Loss on ignition (LOI), as an indicator of organic 
matter content, was also determined by gravimetry 
after dry ashing at 375 °C over 24 h; determinations 
were performed in duplicate per sample.

Sample preparation and the methods used to 
determine Cu and Zn [energy dispersive X-ray 
fl uorescence (EDXRF) and the revised BCR sequential 
extraction method] have been described earlier (23). 
The level of extractable copper in soil tells us how 
much of it is available to plants (4).  As phytoavailability 
of metals depends on various abiotic and biotic 
processes, including adsorption onto and desorption 
from mineral surfaces, precipitation, dissolution of 
minerals, and interactions with soil, numerous 
sequential extraction schemes have been devised to 
assess trace metal content under different environmental 
conditions (e.g. pH, Eh), with various degrees of 
precision (12, 17). We opted for the revised BCR 
(1999) method because it has been widely applied to 
soil and sediment samples by a number of authors 
(15-19). The analytical verifi cation of the method has 
been reported elsewhere (23, 24). The accuracy of the 
BCR method, expressed by the recovery of measured 
elements, ranged from 90 % to 112 %, which is 
considered satisfactory. Its limits of detection are also 
considered acceptable for environmental analyses. 
The overall uncertainty of the measurement was 9 % 
for all elements. The precision of the EDXRF method 
was better than 0.5 % for K, Mn, Fe, and Ti, and for 
other elements better than 5 %.

Statistical analysis

Data were processed with the STATISTICA 
software (Version 7, StatSoft. Inc.). Normality of 
distribution was tested with the Shapiro-Wilk test. We 

used Kendall’s tau correlation coeffi cient to evaluate 
the relationships between variables for every group 
of samples (apple row, between rows, combined 
orchard, and control). Differences between the groups 
were tested with non-parametric Kruskal Wallis and 
Mann-Whitney U tests.

RESULTS AND DISCUSSION

Physicochemical characteristics of the soils

Selected physico-chemical characteristics of the 
studied soils are listed in Table 1. Generally, these 
carbonate-rich soils have pH values within the neutral 
range. The average cation exchange capacity (CEC) 
was 114.3 μEq g-1, which corresponds to loam and 
silty loam soil textures. In terms of mineral composition, 
the soil samples consisted of quartz (semi-quantitative 
range: 20 % to 39 %), dolomite (3 % to 26 %), 
muscovite/illite (29 % to 52 %), plagioclase (7 % to 
13 %), chlorite (7 % to 10 %), and kaolinite (5 % to 
8 %). Minor chlorite-smectite occurrences were 
observed only in one orchard sample and in the control 
soil while kaolinite was found in the orchard samples 
but not in control. This mineral composition largely 
supports low CEC, whose range between 50 μEq g-1 
and 250 μEq g-1 strongly correlates with these 
phyllosilicate minerals (22). Considered alone, this 
physico-chemical profi le suggests that this soil has a 
low potential for phytoavailable Cu or Zn.

Total trace element levels

It has been widely recognised that elevated Cu 
levels in soil decrease microbial activity (6), and that 
Cu levels as low as 15 mg kg-1 can adversely affect 
earthworms (25). Wang et al. (7) have shown that 
fungicide-derived Cu in an apple orchard accounts for 
a large part of the total variance of soil microbial and 
enzyme properties and that it slows down the processes 
mediated by microbes. Roussos and Gasparatos (26) 
found lower Cu levels in the peel of conventionally 
grown than in organically grown apples, which was 
attributed to delayed application of Cu-based 
fungicides in the organic orchard to prevent apple scab 
infection at the later stages of the fruit development. 
These studies illustrate the benefi cial and detrimental 
effects of Cu, but also the complexity of its behaviour 
following the application of pest-control chemicals. 

Medunić G, et al. Cu & Zn FRACTIONATION AND EXTRACTION IN APPLE ORCHARD SOIL
Arh Hig Rada Toksikol 2013;64:531-538



534

This raises the question about fi nding an optimal dose 
in terms of environmental protection.

To understand Cu and Zn fi ndings (presented as 
range, mean and SD values in Table 2) in our apple 
orchard we fi rst need to discuss the characteristics of 
control soil. The Shapiro-Wilk test showed moderate 
to perfect normality for all variables in control samples 
(P=0.61 for Cu and P=0.55 for Zn). Normality 
presumes natural element composition that may serve 
as background data for trace elements in the study 
area.

In addition, we calculated Kendall’s tau correlation 
matrix (P<0.05) for Al, Fe, Co, Ni, Rb, Sr, LOI, Cu, 
Zn, As, and Pb (Table 2) to get a broader view of 
geochemical relations. The first seven variables 
represent conservative components, whose values are 
commonly unaffected by contaminant input, whereas 
the last four are heavy metals whose levels refl ect 
human activity (28). The correlations are mainly 
positive but not statistically signifi cant, and could have 
resulted from geogenic processes in soils formed by 
the weathering of the local bedrock lithology. In other 
words, these correlations in control soil could be valid 
for the entire study area.

With the exception of Cu and Zn, total mean levels 
of all other variables in the orchard were nearly 
identical to control. In contrast, Cu and Zn in orchard 
samples (combined) were signifi cantly higher than 
control (P=0.0009 and P=0.0132, respectively, Mann-

Whitney U test), but did not exceed respective 
Croatian reference limits in agricultural soils of (60 
to 90) mg kg-1 and (60 to 150) mg kg-1 (29). 
Furthermore, the differences between control and 
orchard sites using Cu and Zn values normalised for 
the LOI content were not statistically signifi cant, 
which suggests that both metals have strong affi nity 
for organic matter, as reported elsewhere (4).

We also found a deviation from normal distribution 
for Cu (P=0.10) and Zn (P=0.14), which is consistent 
with copper contamination of the orchard soil.

Similarly, Kendall’s tau correlations between Cu/
Zn and other variables (Table 3) were positive in 
control samples, suggesting a common geochemical 
origin (30). In orchard samples, several correlations 
were even negative, which points to different sources 
and/or different chemical behaviour of these elements 
in soil, as suggested by Abollino et al. (31) or to 
common geogenic processes (30).

Copper and zinc fractionation

Table 3 shows the four extraction steps that 
correspond to exchangeable, reducible, oxidisable, 
and residual fractions of Cu and Zn. The ratio of total 
Cu, determined with EDXRF, to extractable Cu (sum 
of steps 1 to 3) (EDXRF:EF ratio), in control samples 
was distinctly higher than in the apple rows and 
between-row samples. These ratios have a roughly 

Table 1 Mineral and chemical properties of randomly selected control and apple orchard soil samples

Sample Mineral composition Carbonate 
content / % pH LOI /

%
CEC /
μEq g-1

Control 1
Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, chlorite-smectite

22.28 6.72 7.0 165.3

Control 5
Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, chlorite-smectite

20.16 6.80 9.5 161.1

Between apple 
rows 2

Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, kaolinite, chlorite-smectite

20.47 7.38 11.7 120.8

Between apple 
rows 10

Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, kaolinite

22.09 7.16 6.8 67.4

Between apple 
rows 15

Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, kaolinite

24.02 7.23 7.3 75.4

Apple row 3
Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, kaolinite

22.97 7.60 9.3 132.3

Apple row 7
Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, kaolinite

20.78 7.45 11.6 116.6

Apple row 13
Quartz, dolomite, plagioclase, muscovite/
illite, chlorite, kaolinite, chlorite-smectite

23.15 7.23 11.3 75.5

LOI - Loss on ignition; CEC - Cation exchange capacity
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similar trend as reported by Pietrzak and McPhail 
(10).

Figure 1 shows Cu and Zn fractionation in all soils, 
where the relative fractions are in the following 
descending order: residual > oxidisable > reducible > 
exchangeable. In contrast to orchard soil, control soil 
Cu was almost exclusively (>99 %) bound to the 
residual fraction (non-silicate bound metal, Step 4) 
and mineral lattice (labelled as EDXRF on Figure 1), 

and therefore not available to the plant under 
environmental conditions. This agrees with reports 
that metals of anthropogenic origin generally exhibit 
greater mobility in soil compared to metals of natural 
origin, which are strongly bound to soil components 
(4, 8).

The ratios of total to extractable Zn were rather 
comparable in all soils, indicating mainly geogenic 
origin (32).

Table 2 The Kendall’s tau correlation matrix calculated for the studied soil groups

Cu Zn
C O A M C O A M

Al 0.50 -0.03 0.00 0.21 0.12 0.11 0.30 0.10
Fe 0.22 -0.11 -0.06 0.05 0.11 0.28 0.22 0.43
Co 0.47 -0.06 0.37 -0.41 0.22 0.13 0.43 -0.10
Ni 0.32 0.00 0.33 -0.52 0.20 -0.10 0.06 -0.33
Cu 1.00 1.00 1.00 1.00 0.74 0.35 0.39 0.24
Zn 0.74 0.35 0.39 0.24 1.00 1.00 1.00 1.00
As 0.11 0.03 0.11 -0.05 0.00 0.23 0.34 0.14
Rb 0.73 0.11 0.28 0.05 0.60 0.41 0.56 0.43
Sr 0.31 0.14 0.20 -0.05 0.60 0.02 0.03 -0.24
Pb 0.53 -0.04 0.08 -0.05 0.80 0.18 -0.20 0.71
LOI 0.32 0.28 0.39 0.33 0.20 0.34 0.00 0.71

Bolded fi gures denote signifi cant correlations at P<0.05; LOI - loss on ignition; C - control samples, n=5; O - orchard soil 
samples combined (M+A), n=16; A - apple row samples, n=9; M - samples from between the apple rows, n=7). Al, Fe, and 
LOI (loss on ignition) are expressed in %, other values in mg kg-1.

Table 3  Basic statistical parameters of the total (EXDRF) and the BCR-extracted Cu and Zn values in orchard and control 
soil

Decriptive
parameters

Mass fraction / mg kg-1

Control, n=5 Orchard, n=16
Apple row, n=9 Middle row, n=7

Mean (SD) Range Mean (SD) Range Mean (SD) Range
Copper

Step 1 0.00 (0.00) 0.00 to 0.00 0.00 (0.00) 0.00 to 0.00 0.00 (0.00) 0.00 to 0.00
Step 2 0.00 (0.00) 0.00 to 0.00 0.12 (0.24) 0.00 to 0.69 0.52 (1.37) 0.00 to 3.63
Step 3 0.06 (0.13) 0.00 to 0.31 3.59 (1.69) 0.00 to 5.72 4.35 (6.08) 0.00 to 17.53
Step 4 8.92 (0.69) 8.23 to 10.01 12.63 (4.99) 9.08 to 25.30 10.06 (1.60) 7.69 to 12.62
EDXRF 34.96 (1.97) 32.80 to 37.90 46.70 (4.31) 39.00 to 53.20 45.80 (1.66) 43.30 to 48.10
EDXRF:EF 582 12 9

Zinc
Step 1 1.24 (0.94) 0.48 to 2.80 0.86 (0.52) 0.25 to 1.67 0.42 (0.30) 0.00 to 0.84
Step 2 10.33 (2.30) 8.23 to 14.11 10.42 (1.59) 7.65 to 13.26 12.60 (1.30) 11.03 to 14.15
Step 3 16.51 (3.54) 12.83 to 20.46 20.80 (4.07) 15.34 to 26.95 22.54 (2.78) 19.05 to 25.05
Step 4 35.67 (5.07) 31.77 to 44.51 40.09 (5.08) 34.61 to 48.94 37.91 (5.27) 33.75 to 46.48

EDXRF 133.64 (1.30)
132.30 to 

135.70
139.73 
(4.32)

130.40 to 
146.30

139.68 (5.10) 136.40 to 143.20

EDXRF:EF 5 4 4
Step 1: exchangeable fraction; Step 2: reducible fraction; Step 3: oxidisable fraction; Step 4: residual fraction; Steps 1+2+3: 
extractable fraction (EF)
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Generally, our results are comparable with similar 
studies (11, 13, 14, 32). Quite expectedly, the 
extractable amounts were rather low due to low total 
metal content, neutral to alkaline properties of the soils 
(4, 17), and low CEC (Table 1), but important because 
they are phytoavailable.

The Mann-Whitney U and Kruskal-Wallis tests 
showed statistically higher Cu levels in the oxidisable 
fraction of the combined orchard and apple row soil 
compared to control (P=0.01 and P=0.02, respectively), 
which is consistent with other studies (11-14), 
confi rming that Cu is one of the least mobile metals 
in soils due to its strong sorption on and complexation 
with organic matter (4). With the exception of Zn in 
control samples, the correlations between oxidisable 
fractions of both metals and the respective recoverable 
fractions (sums of steps 1-3) were highly signifi cant 
(P=0.77 to 0.99). This points to sorption on organic 
matter as the most important retention mechanism for 
Cu in the studied apple orchard soil.
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Sažetak

KEMIJSKI OBLICI BAKRA I CINKA U TLU NASADA JABUKA U SELU BUKEVJE (HRVATSKA) 
ISPITIVANI REVIDIRANOM BCR EKSTRAKCIJSKOM SHEMOM U ČETIRI KORAKA 

Analizirani su uzorci tla iz obiteljskog voćnjaka u selu Bukevju kako bi se utvrdilo ponašanje metala u 
tragovima u okolišu u kontekstu poljoprivrednih postupaka proteklih nekoliko desetljeća. Unos kemijskih 
sredstava za zaštitu bilja navodno je nizak. Nakon provedene tzv. BCR sekvencijske ekstrakcijske analize, 
kemijski oblici bakra i cinka razmotreni su iz geokemijskoga/geološkoga gledišta. Uzeto je šesnaest uzoraka 
tla iz voćnjaka te pet uzoraka kontrolnog tla s obližnje livade. Analize su obuhvaćale određivanje mineralnog 
sastava tla, kationsko izmjenjivačkog kompleksa (KIK), pH tla i gubitka žarenjem. Koncentracije mjerenih 
varijabli u kontrolnim uzorcima, određene XRF metodom, upućuju na njihove prirodne razine na temelju 
normalnosti raspodjela. Tlo iz voćnjaka neznatno je onečišćeno bakrom, moguće od primjene fungicida 
na bazi bakra, što je utvrđeno Mann-Whitneyevim U testom, koji je pokazao statistički značajno više 
koncentracije ukupnog Cu (P = 0.0009) u tlu voćnjaka u usporedbi s uzorcima kontrolnog tla. Učinkovitost 
BCR ekstrakcije bakra i cinka izračunata za kontrolno tlo (25 % odnosno 47 %) bila je niža nego ona 
izračunata za tlo iz voćnjaka (34 % odnosno 52 %). Bakar, potječući djelomice od fungicida, pokazao je 
veću specijacijsku varijabilnost u istraživanim tlima u usporedbi s cinkom, za koji se pretpostavlja da 
potječe uglavnom od trošenja stijenske podloge. Mann-Whitneyev U test pokazao je statistički značajno 
(P = 0,01) više vrijednosti Cu povezane s frakcijom tla iz voćnjaka podložnoj oksidaciji u odnosu na istu 
frakciju kontrolnih uzoraka. Bakar i cink u istraživanim tlima čvrsto su vezani za rezidualnu i organsku 
frakciju, a ukupne im vrijednosti ne premašuju maksimalno dopuštenu količinu onečišćujućih tvari u 
poljoprivrednom zemljištu, pa ne bi trebali predstavljati toksikološku opasnost za ljudsko zdravlje.

KLJUČNE RIJEČI: BCR ekstrakcijska analiza, fungicidi, litologija podine, poplavna ravnica, rijeka 
Sava
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