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Organophosphorus pesticides (OPs) are widely used volatile pesticides that have harmful effects on the liver in acute and 
chronic exposures. This review article summarises and discusses a wide collection of studies published over the last 40 
years reporting on the effects of OPs on the liver, in an attempt to propose general mechanisms of OP hepatotoxicity and 
possible treatment. Several key biological processes have been reported as involved in OP-induced hepatotoxicity such 
as disturbances in the antioxidant defence system, oxidative stress, apoptosis, and mitochondrial and microsomal 
metabolism. Most studies show that antioxidants can attenuate oxidative stress and the consequent changes in liver 
function. However, few studies have examined the relationship between OP structures and the severity and mechanism 
of their action. We hope that future in vitro, in vivo, and clinical trials will answer the remaining questions about the 
mechanisms of OP hepatotoxicity and its management.
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stress

Organophosphorus pesticides (OPs) have harmful 
effects on human health through environmental or 
occupational exposure. Roughly 0.1 % of the applied 
pesticides reach the target pests, and the rest spreads through 
water, soil, and food (1-3). These pesticides are readily 
available on the market. Suicidal poisoning with OPs is 
common, particularly in rural areas (4). Acute poisoning 
with OPs is a global threat to human health that causes more 
than 100,000 deaths a year (5, 6).

They primarily affect the nervous system of the exposed 
organisms by inhibiting acetylcholinesterase (AChE) and 
raising acetylcholine levels in the cholinergic synapse. 
Beside cholinergic effects, OPs induce oxidative stress (7, 
8), affect metabolic pathways (9), and cause multiple organ 
dysfunctions such as hypoxia and inadequate tissue 
perfusion of the liver and heart (10). In the liver they cause 
ultrastructural, biochemical, metabolic, and mitochondrial 
damage, evidenced by changes in hepatic biomarkers such 
as serum aminotransferase and direct and indirect bilirubin 
(11-31).

Their mechanisms of action on the liver and metabolism 
have not yet been fully clarified, and finding an effective 
therapy against OPs still remains a major challenge.

This review article summarises and discusses a wide 
collection of studies published over the last 40 years 
reporting on the effects of OPs on the liver, in an attempt 
to propose general mechanisms of OP hepatotoxicity and 
possible treatment.

Literature collection

To screen for and select relevant literature we ran the 
keywords “Organophosphate”, “organophosphorus”, 
“hepatotoxicity”, and “liver toxicity” through all relevant 
bibliographic databases, including Google Scholar, Scopus, 
Web of Science, PubMed, Medline, and Embase. The 
screening yielded more than 300 papers between the years 
1977 and 2015. The obtained corpus was further sifted for 
the following search terms “acetylcholinesterase”, 
“acetylcholine”, “oxidative stress”, “lipid peroxidation” 
“metabolic disorders”, “mitochondrial toxicity”, 
“genotoxicity”, “histopathological”, and “therapeutics” to 
narrow the choice of relevant articles to over 170, covering 
the last four decades of research.

Histopathological evidence of OP hepatotoxicity

Many studies confirm that the liver tissue is the primary 
target organ of OP toxicity (Figure 1).

Chlorpyrifos is a typical representative of the OPs, 
which causes detrimental effects both on liver function and 
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structure. Almost forty years ago, Mikhail et al. (32) found 
that a two-day i.p. exposure to a sub-lethal dose of this 
insecticide resulted with mid-zonal liver necrosis, fatty 
deposition at the periphery, and glycogen deposition at one 
side of the hepatic cell and around the central vein. Goel et 
al. (33) studied liver histoarchitecture in chlorpyrifos-
treated rats and observed hepatocyte vacuolisation and 
necrosis, sinusoidal dilatation, and increase in binucleated 
cells at higher doses and longer exposure to chlorpyrifos. 
Recent findings by Ezzi et al. (34) suggest that chlorpyrifos 
had a dose-dependent effect on dilated sinusoids, central 
vein, and portal triad in rats.

An excessive amount of liver blood and degenerative 
changes were found in the liver of fish exposed to 
chlorpyrifos through contaminated water (35).

Another OP compound associated with liver damage in 
experimental animals is triazophos. Sharma et al. (36) 
observed a variety of histopathological findings, such as 
infiltration, vacuolisation, enlarged sinusoids, and necrosis 
in female albino rats exposed to triazophos.

Sub-chronic exposure of rats to methidathion caused 
mononuclear cell infiltration in all portal areas, sinusoidal 
dilatation, focal micro-vesicular steatosis, and parenchymal 
degenerations (17, 26).

Dose-dependent liver changes, including necrosis, 
cytoskeleton disarray, vacuolisation of the endothelial cells, 
damages in Disse's space, changes in nuclear shape, and 
heterochromatin distribution were evidenced in the liver of 
fish and rats exposed to sub-lethal doses of diazinon for a 
long time (37, 38).

Acute high dose of diazinon caused hypertrophy and 
swelling of hepatocytes, vacuolisation of cytoplasm, and 
macrovascular steatosis (39). Forty-minute inhalation of 
diazinon every other day in pregnant mice induced a dose-
dependent increase in the hepatocyte area, hepatocyte 
apoptosis, and a decrease in the sinusoid area of the foetal 
liver (40).

Malathion caused macrovesicular steatosis, apoptotic 
nuclei,  granulovacuolar dystrophy lesions, and 
pericentrilobular vasodilatation in the liver of rats after 
about one month of low-dose exposure (41, 42). In contrast, 
Chakraborty et al. (43), reported only discrete to mild 
histological changes in the liver of rats exposed to a 
malathion dose about four times higher than in the study of 
Baconi et al. (41) for 15 days. A four-week daily oral 
exposure to sub-lethal doses of malathion caused 
hepatomegaly, necrotic lesions in the periportal lobules, 
cytoplasmic vacuolation around nuclei, and sinusoid 
expansion and atrophy of hepatocytes in rat liver (44, 45).

Parathion in the study by Chakraborty et al. (43), just 
like malathion, caused mild histopathological changes over 
15 days of exposure. However, methyl parathion in the 
study by Undeger et al. (46) increased liver weight and 
caused hepatomegaly at lower doses than parathion. A sub-
lethal dose of methyl parathion also caused cloudy swelling, 
bile stagnation, focal necrosis, atrophy, and vacuolisation 
in the liver tissue after contamination through water (47).

Dimethoate led to dose-dependent histological changes 
in rat liver, such as mononuclear cell infiltration, Kupffer 
cell count increase, congestion and dilatation of veins and 
sinusoids, necrosis, cytoplasmic vacuolisation, and 
degeneration of hepatocyte nuclei (22).

All of these studies investigated thion OPs that caused 
liver damage regardless of their structural differences. The 
exception is the study by Chakraborty et al. (43), but its 
comparison with Undeger et al. (46) may explain why. 
Namely, the presence of a bulky group in the side chain of 
OPs can make a great difference in the severity of liver 
injury.

As for oxon OPs, studies have reported hyalinisation, 
vacuolisation, nucleus necrosis, and hepatocellular oedema, 
and fatty degeneration in sub-acute exposure to low-dose 
of trichlorfon and acute exposure to omethoate (48, 49).

These disturbances in the morphological structure of 
the liver could be associated with a disruption of the tissue 
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Figure 1 Histopathological disorders in the hepatic lobule after exposure to organophosphorus pesticides
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function, which could also be related to lower antioxidative 
capability, change in fatty and glycogen content in the liver, 
and the inhibition of some enzymes contributing to lipid, 
protein, and carbohydrate metabolism needed to preserve 
the integrity of the liver tissue.

Biochemical evidence of OP hepatotoxicity

Figure 2 shows some of the possible biochemical 
changes in the serum and liver after OP exposure. The most 
common serum biomarkers of liver damage are aspartate 
transaminase (AST) and alanine transaminase (ALT). There 
is strong evidence that both are increased by dimethoate, 
monocrotophos, methyl parathion, dichlorvos, fenitrothion, 
omethoa te ,  ch lo rpyr i fos ,  2 -bu teno ic  ac id -3 -
(diethoxyphosphinothioyl) methyl ester (RPR-II), diazinon, 
and methidathion (21, 33, 39, 49-64). It is interesting to 
note that the increases in AST and ALT are often 
accompanied by increases in the inflammatory mediator 
tumour necrosis factor alpha (TNF-α) (39, 49, 51, 65). In 
humans, higher AST and ALT were reported in tobacco 
farmworkers in India (66) and farm workers in Gadap 
Karachi, Pakistan exposed to a mixture of pesticides, 
including OPs (67).

Other biomarkers of liver damage include acid 
phosphatase (AcP) and alkaline phosphatase (ALP). Sub-

lethal concentrations of methamidophos, phorate, and 
RPR-II seem to increase AcP and ALP in plasma and lower 
them in the liver tissue of animals (60, 68, 69). Similar 
findings have been reported for sub-chronic monocrotophos, 
methyl parathion, and dimethoate effects on ALP and AcP 
levels in plasma, but not in the liver, where they also 
increased (21, 59).

Impaired bile flow and biliary excretion could also serve 
as indirect indicators of liver damage (70). Goel and 
Dhawan (71), for example, suggested that poor biliary 
excretion and longer half-life of 99mTc-mebrofenin in 
chlorpyrifos-treated rats reflected impaired hepatobiliary 
function.

As impaired liver function affects the metabolism, 
consequently it also affects the concentrations of waste 
products. Several animal studies have pointed to the indirect 
effects of sub-lethal doses of phorate, fenitrothion, and 
dimethoate on urea and bilirubin (58, 64, 72). In humans 
occupationally exposed to a wide range of OPs, blood urea 
nitrogen and albumin along with serum aminotransferases 
are frequently elevated (30, 73). Since, there are limited 
data about the hepatotoxicity of OPs in humans, it is not 
certain whether changes in biochemical parameters indicate 
actual liver damage.

Karami-Mohajeri S, et al. Adverse effects of OPs on the liver: a brief research summary 
Arh Hig Rada Toksikol 2017;68:261-275

Figure 2 Possible disturbance pathways in the liver tissue after exposure to organophosphorus pesticides. Black arrows indicate 
long-term exposure and red ones acute poisoning.
Abbreviations: AcP = acid phosphatase; ALP = alkaline phosphatase; ALT = alanine aminotransferase; ANDM = aminopyrine-N-
demethylase; APH = aniline-p-hydroxylase; AST = aspartate aminotransferase; CES= carboxylesterase; G6Pase = glucose-6-
phosphatase; GP= glycogen phosphorylase; HDL = high-density lipoprotein; HK = hexokinase; LDL = low-density lipoprotein; PEPC 
= phosphoenolpyruvate carboxykinase; TG = triglyceride
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(90-94), energy production (93, 95-97), and cell death (98-
100). Several studies have found an association between 
mitochondrial dynamics and malathion-induced drop in 
mitochondrial ATP synthesis in rat liver (9) or quinalphos 
and acephate effects on liver succinic dehydrogenase (84, 
85, 101) and ATPase activities (87) - all of them the key 
enzymes for oxidative phosphorylation. Two studies in rats 
(90, 93) point to an OP-induced drop in the liver 
mitochondrial respiratory control ratio (RCR), especially 
by dichlorvos. This decline may be related to changes in 
the inner mitochondrial membrane permeability caused by 
lipid peroxidation. A time-dependent decrease in carbonic 
anhydrase activity was reported in fish exposed to 
chlorpyrifos (35). Carbonic anhydrase in hepatocyte 
mitochondria plays a vital role in the regulation of ionic 
balance, which is required in metabolic reactions, 
production of ATP, and transport processes (102).

The effects of OPs, most notably diazinon and 
fenitrothion, on liver protein metabolism include the 
reduction of total protein, albumin, calcium-binding protein, 
and regucalcin (which is involved in Ca2+ transport) (51, 
64, 72, 81, 86).

Diaz inon  can  lower  the  l ive r  ac t iv i ty  o f 
fumarylacetoacetase, which catalyses the hydrolysis of 
4-fumarylacetacetate to acetoacetate and fumarate as part 
of the phenylalanine and tyrosine catabolism pathways and 
contributes to mental retardation (81). It can also affect 
carbamoyl-phosphate synthase, which catalyses the 
synthesis of carbamoyl phosphate from glutamine or 
ammonia and bicarbonate, and S-adenosylmethionine 
synthetase, which is vital for nucleic acid and protein 
synthesis (81).

One study revealed that methyl parathion affected the 
liver expression of chaperones and proteins regulating the 
cytoskeleton system, cell metabolism and signalling, 
electron transport, and hormone receptors in zebrafish (103).

Some studies reported OP-induced changes in liver lipid 
profiles. Nagaraju et al. (104) reported dyslipidaemia, 
including higher triglycerides and lower HDL-C in rats 
chronically exposed to monocrotophos. Sub-lethal 
fenitrothion reversibly increased triglycerides and 
cholesterols in mice after 90 days of exposure. All values 
returned to normal, except for triglycerides (72). Trichlorfon 
at the concentration of 2 mg L-1 decreased hepatic hormone-
sensitive lipase, very-low-density lipoprotein, and 
apolipoprotein B100 levels, which is associated with 
impaired lipid transport and accumulation of lipids in 
hepatocytes (105). However, low-dose OPs may not be 
contributing to lipid metabolism. In an in vitro study by 
Takeuchi et al. (106) reported that OPs at concentrations as 
low as 10-5 mol L-1 did not activate peroxisome proliferator-
activated receptors, which are ligand-dependent transcription 
factors and key regulators of lipid metabolism.
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Possible effects of OPs on hepatic carbohydrate, lipid, 
and protein metabolism

Histological disorders are related to the metabolic 
capacity of the liver. Figure 2 illustrates how disturbances 
in the histoarchitecture of the liver induced by OPs can 
affect its performance in the enzymatic pathways involved 
in the metabolism of lipids, carbohydrates, and proteins in 
the cytoplasm, mitochondria, and peroxisomes (9). Animal 
studies suggest that the activity of glycogen phosphorylase 
(GP), the enzyme that breaks glycogen into glucose and 
reduces the hepatic glycogen content, increases after 
fenitrothion and malathion exposure (74, 75). This is 
supported by a drop in hepatic glycogen concentration after 
fenthion exposure in fish (76). In a study by Rezg et al. (44), 
however, sub-chronic exposure to malathion decreased GP 
activity by 50 % and increased hexokinase activity by 10 % 
bu t  had  no  e ffec t  on  b lood  g lucose  l eve l s . 
Phosphoenolpyruvate carboxykinase (PEPCK) plays a 
crucial role in gluconeogenesis, and several studies have 
reported that malathion and diazinon increase the activity 
of both GP and PEPCK (75, 77-79). Two other hepatic 
gluconeogenesis enzymes, namely glucose-6-phosphatase 
and malate dehydrogenase, are affected by acute exposure 
to OPs, as reported for acephate (80). In contrast, Sharma 
et al. (23), found no significant changes in glucose-6-
phosphate dehydrogenase (G6PD) activity in acute 
exposure to dimethoate. In another study (81), hepatic 
malate dehydrogenase involved in the citric acid cycle and 
gluconeogenesis was downregulated in rats exposed to a 
sub-lethal dose of diazinon. OPs also seem to lower 
glucokinase, a liver enzyme contributing to glycogen 
synthesis, as reported for dichlorvos exposure (82). All of 
these studies indicated changes in carbohydrate metabolism, 
but their inconsistencies may be owed to the type of the 
investigated OP, route of administration, as well as animal 
species and strain.

On the other hand, diazinon-poisoned rats showed 
increased lactate production (83). This increase may be due 
to an increase in liver lactate dehydrogenase (LDH) activity, 
a key cytosolic enzyme in glycolysis, reported for the 
exposure to quinalphos, dimethoate, acephate, fenitrothion, 
and methidathion (21, 61, 84-86). In a study by 
Mukhamedzhanov et al. (87) acute treatment of rats with 
intramuscular chlorophos and trichlorometaphos activated 
aldolase and LDH, which are both glycolytic enzymes. 
Higher hepatic LDH activity may represent a shift from 
mitochondrial respiration toward anaerobic glycolysis. 
Parallel changes in serum LDH and aminotransferases also 
suggest substantial liver involvement during exposure.

As a primary site of cellular energy generation and 
oxygen consumption, mitochondrion is a likely target for 
OPs, which may explain their non-cholinergic toxicity (88, 
89). Recent research has focused on the possible roles of 
mitochondrial dysfunction in OP-induced toxicity through 
mitochondrial respiration rate, respiratory chain enzymes 
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Possible effects of OPs on hepatic oxidative stress 
pathways

Formation of reactive oxygen species (ROS) and 
reactive intermediates after exposure to pesticides can cause 
hepatotoxicity (107). Extensive data suggest that free radical 
formation and oxidative stress can be a major contributor 
to the toxicity of pesticides (108-113). OPs are oxidants 
and impair enzymatic antioxidant defences, including 
superoxide dismutase (SOD), catalase (CAT), glutathione 
peroxidase (GPx), and glutathione S-transferase (GST) (23, 
34, 44, 114-129). Malathion, methyl parathion, and 
parathion in HepG2 cell lines, as well as chlorpyrifos, 
methidathion, chlorfenvinphos, and dimethoate in rat liver 
and diazinon in fish most probably disrupt membrane lipids 
through oxidative stress (23, 35, 61, 116, 118, 130-135). 
Table 1 summarises the key changes in antioxidant defence 
and oxidative stress biomarkers caused by OPs. Oxidative 
stress contributes to OP-induced toxicity through 
peroxidation of cellular macromolecules, which leads to a 
degradation of membrane phospholipids and proteins and 
cellular deterioration.

The main role in the induction of oxidative stress is 
played by the mitochondria. Leakage of electrons from the 
respiratory chain leads to the formation of ROS, triggers 
apoptotic pathways, and affects metabolism and ATP 
generation (136-138). Mitochondria are susceptible to 
oxidative damage, which manifests itself as changes in their 
transmembrane potential and weakened membrane integrity 
(137, 138). Mitochondrial oxidative damage is a major 
cause of many liver disorders, including chronic hepatitis, 
steatosis, ischemic injuries, aging, and inflammatory 
damage (140, 141). Several studies have evidenced the 
involvement of mitochondria in hepatotoxicity induced by 
OPs. For example, acute exposure to malathion and chronic 
exposure to dichlorvos and chlorpyrifos can increase the 
release of cytochrome C from mitochondria to cytosol and 
activate caspase-3 by disrupting cellular antioxidant 
defences (88, 99, 142). Diazinon can trigger apoptotic 
pathways by activating caspase-9 and caspase-3, increase 
the Bax/Bcl-2 ratio and protein disulphide isomerase (with 
pro-apoptotic function), and suppress endoplasmic 
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Table 1 Summary of oxidative stress processes in the liver tissue triggered by organophosphorus pesticides

Pesticide 
type

Route of 
administration

Exposure 
duration Dose Animal Antioxidant 

enzymes

Oxidative 
stress 

products
Antioxidants

Chlorpyrifos 
(141) gavage 8 w 6.75 mg kg-1 

per day rat -
▲LPO, 
▲PC 

▲ROS
▼TAC

Chlorpyrifos 
(121) water 24, 48, & 

96 h

single dose 
15.3 and 
51 µg L-1

fish ▲SOD, 
▼CAT ▲LPO ▼TAC

Chlorpyrifos 
(122) intramuscular 7 d

single dose 
50, 100, and 
200 mg kg-1

rat

▼SOD, 
▼CAT, 

▼G6PDH, 
▼GR, ▲GPx

▲LPO ▼GSH, 
▲GSSG

Chlorfen-
vinphos (133) gavage 14 & 28 d 0.3 mg kg-1 

per day rat - ▲H2O2 ▼GSH

Diazinon 
(134) water 12 or 24 h

0.97, 
1.95, and 

3.95 mg L-1
fish - ▲LPO, 

▲PC -

Diazinon (39) gavage 7 d single dose 
335 mg kg-1 rat ▲SOD, 

▼MPO - -

Diazinon (37) water 4 w 0.1 and 
0.2 mg L-1 fish - ▲LPO ▲TAC

Diazinon 
(123) drinking water 1 w 10 mg kg-1 rat

▼GPx, 
▼GST, 
▼CAT

- ▼GSH

Diazinon 
(124) water 1, 7, 15, 

& 30 d
0.1, 1, and 
2 mg L-1 fish ▲GST ▲ LPO ▲GSH

Diaxinon 
(125) water 5, 15, & 

30 d

0.0036, 
0.018, and 

0.036 µg L-1
fish

▲SOD, 
▲GPx, 
▲CAT

NC LPO -

Dichlorvos 
(126) gavage 3 w

0.64, 
1.60, and 

4.00 mg kg-1 
per day

rat ▲SOD, 
▲CAT

▲LPO, 
▲PC -
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chaperone (with anti-apoptotic properties) in the liver (81, 
143). 

Possible effect of OPs on hepatic biotransformation

Animal studies of OP effects on important cytochromes 
and microsomal enzymes that affect biotransformation of 
compounds and drug metabolism report controversial 
results. Several studies reported chlorpyrifos, malathion, 
and parathion as potent inhibitors of cytochrome P 450 
(CYP) 3A and 2C11, cytochrome b5, and aminopyrine 
N-demethylase (ANDM) (42, 144, 121), but some reported 
no effect (parathion on CYP 2A1, 2A2, and 2C6) (144) or 
an increase (iprobenfos on CYP 1A mRNA transcription) 
(143). Low-dose dimethoate administered for two weeks 
increased the mRNA expression of CYP 2D1 and higher 
metabolism of metoprolol in rats (145). Parathion and 
paraoxon decreased the activity of rat liver benzo(a)pyrene 
hydroxylase, which is governed by CYP 1A1 (146).

In humans, Van der Meer et al. (147) reported complete 
inhibition of atropine metabolism in OP-poisoned patients 

and that this was owed to the inhibition of hepatic 
microsomal enzymes.

Several in vitro studies have also indicated OP effects 
on aryl hydrocarbon receptor (AhR), a ligand-dependent 
transcription factor that regulates genes involved in 
xenobiotic metabolism (148-150).

Possible mutagenic, genotoxic, and carcinogenic effects 
of OPs

Mutagenic and genotoxic effects of pesticides have been 
evidenced by a variety of tests showing gene mutations, 
chromosomal aberrations, and micronucleus formation 
(151-154). The mutagenic effects of OPs are owed to the 
direct alkylating ability of the parental molecule and its 
metabolites (130, 131, 155).

The genotoxic potential of pesticides has been 
demonstrated by the comet assay in exposed workers in 
India and Iran (156, 157). Several in vivo and in vitro studies 
reported that the genotoxicity of OPs such as dimethoate, 
methyl parathion, chlorpyrifos, phorate, and malathion in 

Pesticide 
type

Route of 
administration

Exposure 
duration Dose Animal Antioxidant 

enzymes

Oxidative 
stress 

products
Antioxidants

Dimethoate 
(118) gavage 30 d

0.6, 6 and 
30 mg kg-1 

per day
rat ▼GST ▲ LPO ▼GSH 

Dimethoate 
(21) gavage 8 w 20 mg kg-1 

per day rat
▲SOD, 
▲GPx, 
▼CAT

▲LPO -

Dimethoate 
(23) gavage 24 h

single dose 
45, 75, and 
90 mg kg-1

rat
▲SOD, 
▲GPx, 

▲CAT, ▲GR
▲ LPO ▼GSH

Dimethoate 
(127) intraperitoneal 1 w

1, 5, 10, 
15 and 

30 mg kg-1
rat ▲CAT ▲LPO, 

▲PC -

Fenitrothion 
(128) water 1 w 0.04 mg L-1 fish

▲SOD, 
▲CAT, 
▲GST

- -

Malathion 
(129) gavage 4 w 200 mg kg-1 

per day rat - ▲LPO ▼GSH, 
▼TAC

Malathion 
(45) water 4 w 150 mg kg-1 

per day rat ▼ SOD, ▼ 
CAT ▲ LPO ▼GSH

Malathion 
(116) drinking water 4 w

100, 316, 
1000 and, 

1500 mg L-1
rat ▲SOD, 

▲CAT ▲ LPO -

Methidathion 
(17, 26, 61) gavage 24 h single dose 

8 mg kg-1 rat - ▲ LPO -

Trichlorfon 
(48) water 4 w 0.01, 0.1, 

1.0 mg L-1 frog ▲SOD, 
▲CAT ▼ LPO -

Triazophos 
(36) gavage 4 w 8.2, 4.1, and 

2.05 mg kg-1 rat

▼SOD, 
▼GPx, 

▼CAT, ▼GR, 
▼GST

▲ LPO -

Abbreviations: CAT = catalase; G6PDH = glucose-6-phosphate dehydrogenase; GPx = glutathione peroxidase; GR = glutathione 
reductase; GSH = reduced glutathione; GSSG = oxidized glutathione; GST= glutathione S-transferase; H2O2 = hydrogen peroxide; 
LPO = lipid peroxidation; MPO = myeloperoxidase; NC = no change; PC = protein carbonyl; SOD = superoxide dismutase; TAC = 
total antioxidant capacity

Table 1 continued



267Karami-Mohajeri S, et al. Adverse effects of OPs on the liver: a brief research summary 
Arh Hig Rada Toksikol 2017;68:261-275

hepatocytes was associated with oxidative damage (130, 
131, 127, 149-159). A study by Hreljac et al. (160) showed 
that methyl paraoxon was less genotoxic in HepG2 cells 
than its parent OP methyl parathion. This suggests that the 
genotoxicity of methyl parathion and methyl paraoxon is 
AChE-independent and that other mechanisms are involved 
in this process. In the same study, on the other hand, 
dimefox, a highly toxic OP, did not induce DNA strand 
breaks but showed mitogenic activity.

As for carcinogenicity, Reuber (161) reports that 
dimethoate and omethoate, its toxic metabolite, can cause 
benign and malignant neoplasms in the liver. However, the 
International Agency for Research on Cancer (IARC) could 
not find enough evidence to classify dimethoate as potential 
carcinogen (162). Furthermore, a study by Bonner et al. 
(163) did not associate malathion with cancer in pesticide 
applicators. All these findings suggest that the agents 
causing low DNA damage are generally not mutagenic or 
carcinogenic, and those causing sustained DNA and cell 
damage (but not cell death) are mutagenic and/or 
carcinogenic (164).

Conclusions and recommendations to control OP-
induced liver damage

This literature review abundantly evidences that OPs 
can have significant and harmful effects on the liver and 
points to the need of regular liver function monitoring in 
long-term occupational and short-term accidental exposure 
to OP insecticides.

The presented research (summarised in the 
supplementary Table 2 at the end of the review) suggests 
that the key mechanisms of OP action are disturbances in 
the liver metabolism and mitochondrial metabolic pathways 
caused by oxidative damage. This conclusion is reinforced 

by other OP effects, such as apoptosis, cell toxicity, 
genotoxicity, and tissue damage induced by ROS triggered 
by OP exposure.

The best course of action to counter OP liver and 
mitochondrial toxicity in acute, subacute, sub-chronic, or 
chronic exposure is therefore to use antioxidants (89, 119, 
165, 166). The choice of antioxidants is wide, but several 
have been evidenced as potent against OP toxicity, including 
selenium (167), N-acetylcysteine (NAC), pentoxifylline 
(PTX), and alpha-tocopherol. NAC has been reported to 
significantly decrease lipid peroxidation, hospital time, and 
mortality in poisoned patients (168), whereas PTX and 
alpha-tocopherol reverse OP-induced effects on glutathione, 
nitrotyrosine, CAT, and GPx (65, 169, 170). Recently, a 
new generation of possible antidotes to OP poisoning has 
raised interests, the so called OP hydrolases produced by 
bacteria, but research has not yet reached clinical stage 
(171).

Since few studies have compared the effects of OPs 
with different structures, little is known about the exact 
relationship between the severity and mechanism of liver 
damage and the chemical structure of these toxins.

We hope that future in vitro, in vivo, and clinical trials 
will answer the remaining questions about the mechanisms 
of OP hepatotoxicity and its management.
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Table 2 (supplementary) Summary of the key hepatotoxic effects by organophosphorus pesticides

Name Structure
1 Pesticide type

2 Chemical formula
3 CAS number

Hepatotoxic effects

Chlorpyrifos
(33, 34, 35, 53, 
71, 132, 141, 121, 
158, 122)

1 Insecticide
2 C9H11Cl3NO3PS

3 2921-88-2

- Histopathological changes (rat and fish)
- Changes in hepatobiliary system (rat)

- Changes in serum liver damage biomarkers 
(rat)

- Downregulation of CYP 3A (fish)
- Oxidative stress induction (rat and fish)

- DNA damages (rat)
- Apoptosis induction (rat)

Triazophos (36)

1 Acaricide, insecticide, and 
nematicide

2 C12H16N3O3PS
3 24017-47-8

- Histopathological changes (rat)
- Oxidative stress induction (rat)

Methidathion (17, 
26, 61)

1 Acaricide and insecticide
2 C6H11N2O4PS3

3 950-37-8 

- Histopathological changes (rat)
- Oxidative stress induction (rat)
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Name Structure
1 Pesticide type

2 Chemical formula
3 CAS number

Hepatotoxic effects

Diazinon (13, 
37-40, 51, 63, 78, 
81, 83, 154, 167, 
172-125)

1 Insecticide
2 C12H21N2O3PS

3 333-41-5 

- Histopathological changes (rat and fish)
- Changes in serum liver damage biomarkers 

(rat)
- Glucose, lipid, and protein metabolism (rat)

- Oxidative stress induction (rat and fish)
- DNA damages (rat)

- Apoptosis induction (rat)

Malathion (12, 20, 
25, 41-45, 75-77, 
94, 95, 116, 169, 
129)

1 Insecticide
2 C10H19O6PS2

3 121-75-5 

- Histopathological changes (rat)
- Changes in serum liver damage biomarkers 

(rat)
- Glucose, lipid, and protein metabolism (rat)

- Oxidative stress induction (rat)
- Metabolism (chicken)

- Apoptosis induction (rat)

Parathion (43, 
103, 133, 146)

1 Insecticide
2 C10H14NO5PS

3 56-38-2

- Histopathological changes (rat)
- Changes in serum liver damage biomarkers 

(rat)
- Downregulation of CYP 3A and 2C11 (fish)

- Lipid metabolism (fish)
- Oxidative stress induction (rat)

- Decrease in benzo(a)pyrene metabolism (rat)
- Apoptosis induction (rat)

Methyl parathion 
(46, 47, 103)

1 Insecticide
2 C8H10NO5PS

3 298-00-0

- Histopathological changes and hepatomegaly 
(rat)

- Changes in serum liver damage biomarkers 
(rat)

- Lipid metabolism (fish)

Dimethoate (21-
23, 58, 60, 118, 
145, 127)

1 Acaricide and insecticide
2 C5H12NO3PS2

3 60-51-5

- Histopathological changes (rat)
- Changes in serum liver damage biomarkers 

(rat)
- Upregulation of CYP 2D1 (rat)

- Cause benign and malignant neoplasm (rat)
- Oxidative stress induction (rat)

Omethoate (49, 
161)

1 Acaricide and insecticide
2 C5H12NO4PS

3 1113-02-6

- Histopathological changes (rat)
- Changes in serum liver damage biomarkers 

(rat)
- Cause benign and malignant neoplasm (rat)

Trichlorfon 
(48,105, 115)

1 Insecticide
2 C4H8Cl3O4P

3 52-68-6

- Histopathological changes (frog)
- Lipid metabolism (fish)

- Oxidative stress induction (rat and frog)

Monocrotophos 
(59, 65, 104)

1 Insecticide
2 C7H14NO5P
3 6923-22-4

- Changes in serum liver damage biomarkers 
(rat)

- Glucose and lipid metabolism (rat)

Dichlorvos (82, 
88, 93, 126)

1 Insecticide
2 C4H7Cl2O4P

362-73-7

- Histopathological changes (rat)
- Changes in serum liver damage biomarkers 

(rat)
- Glucose and lipid metabolism (rat)

- Oxidative stress induction (rat)
- Apoptosis induction (rat)

Fenitrothion (54, 
64,72, 74, 86, 128)

1 Insecticide
2 C9H12NO5PS

3 122-14-5 

- Changes in serum liver damage biomarkers 
(rat)

- Glucose and lipid metabolism (fish)
- Oxidative stress induction (rat)
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Name Structure
1 Pesticide type

2 Chemical formula
3 CAS number

Hepatotoxic effects

RPR-II (60)
1 Insecticide

2 C6H10O2
3 924-50-5

- Changes in serum liver damage biomarkers 
(fish)

Methamidophos 
(69)

1 Insecticide
2 C2H8NO2PS
3 10265-92-6

- Changes in serum liver damage biomarkers 
(rat)

- Histopathological changes (rat)
- Oxidative stress induction (rat)

Phorate (68, 159)
1 Acaricide and insecticide

2 C7H17O2PS3
3 298-02-2

- Changes in serum liver damage biomarkers 
(rat)

- DNA damages (rat)
- Oxidative stress induction (rat)

Fenthion (76, 133)

1 Acaricide, avicide,
and insecticide
2 C10H15O3PS2

3 55-38-9

- Glucose metabolism (fish)
- Oxidative stress induction (fish)

Acephate (80,84)
1  Insecticide

2 C4H10NO3PS
3 30560-19-1  

- Changes in serum liver damage biomarkers 
(rat)

- Glucose metabolism (rat)

Chlorophos (87)
1  Insecticide and vermicide

2 C4H8Cl3O4P
352-68-6

- Changes in serum liver damage biomarkers 
(rat)

- Glucose metabolism (rat)

Trichlorometaphos 
(87)

1 Insecticide
2 C9H10Cl3O3PS

3 2633-54-7

- Changes in serum liver damage biomarkers 
(rat)

- Glucose metabolism (rat)

Quinalphos (85)
1 Insecticide

2 C12H15N2O3PS
3 13593-03-8

- Glucose metabolism (fish)

Abbreviations: CYP = cytochrome P 450; RPR-II = 2-butenoic acid-3-(diethoxyphosphinothioyl)methyl ester
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Štetno djelovanje organofosfornih pesticida na jetra: kratki pregled četrdesetogodišnjeg istraživanja

Organofosforni pesticidi (OP) imaju veoma široku primjenu, ali i štetno djeluju na jetru pri akutnoj i kroničnoj izloženosti. 
Ovaj članak daje pregled 40 godina istraživanja djelovanja OP-ova na jetru s namjerom da predloži neke zajedničke 
mehanizme njihova toksičnog djelovanja na jetru i liječenje. U istraživanjima se izdvaja nekoliko ključnih bioloških 
procesa koji sudjeluju u hepatotoksičnosti OP-ova, poput narušavanja antioksidacijskoga obrambenog sustava, 
oksidacijskoga stresa, apoptoze te mitohondrijskoga i mikrosomalnoga metabolizma. Rezultati većine istraživanja potvrdili 
su da antioksidansi uspješno ublažavaju posljedice oksidacijskoga stresa u jetri. Međutim, gotovo da i nije istražena 
povezanost između strukture OP-ova i njihove štetnosti odnosno mehanizama djelovanja. Nadamo se da će buduća in 
vitro i in vivo istraživanja te klinička ispitivanja odgovoriti na preostala pitanja vezana uz mehanizme hepatotoksičnoga 
djelovanja OP-ova i njegova uspješnoga liječenja.
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