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Cypermethrin and beta-cyfl uthrin are two most widely used multipurpose pyrethroids. After determining 
their oral LD50 (416.98 mg kg-1 and 354.8 mg kg-1 body weight, respectively), we assessed their 
hepatotoxicity in Wistar rats following acute (0.1 LD50 for 1 day) and sub-acute (0.1 LD50 for 7, 14, 21 or 
28 days) poisoning. The assessment was based on hepatic marker enzymes AST, ALT, LDH, ALP, glycogen, 
total proteins, total lipids, cholesterol, free fatty acids, and phospholipids. AST, ALT, LDH, total lipids, 
cholesterol, phospholipids, and free fatty acids in hepatic homogenate increased following pyrethroid 
stress. In contrast, hepatic proteins, glycogen, and ALP activity decreased due to lysis of structural proteins 
and leakage of enzymes into the blood stream. Biochemical data were consistent with histological alterations 
(cytoplasmic vacuolisation, nuclear polymorphism, eccentric nucleus, karyolysis, karyorrhexis, and 
sinusoidal dilation). Comparatively greater hepatocellular damage was noted in beta-cyfl uthrin than in 
cypermethrin-treated rats, which is probably related to the fl uorine atom in beta-cyfl uthrin.
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Pesticides are the most effective means of pest 
eradication all over the world, but their use has reached 
an alarming rate due to a number of adverse effects 
on non-target organisms (1-3). For the last few 
decades, pyrethroid pesticides have strengthened their 
place in the pesticide market for several uses. This 
enhanced use, however, affects more and more non-
target species (4, 5). The situation has got even worse 
due to continuous growth of chemical and pesticide 
industry (6, 7). Research & development units of 
multinational companies keep synthesising new 
cyanoderivatives to counteract genetically modifi ed, 
resistant pest species. Modifying pesticide structure 
and activity is the demand of the day.

The aim of this study was to establish hepatic 
toxicity of the most common, new-generation, type II 
pyrethroids cypermethrin and beta-cyfl uthrin in Wistar 
rats.

MATERIALS AND METHODS

Experimental animals

The study included 75 eight-week old female 
Wistar rats from an inbred colony weighing (110±20) g 
and receiving standard rat pellet feed and water ad 
libitum. The rats were divided in three groups 
(cypermethrin, beta-cyfl uthrin, and control), which 
were further divided in fi ve sub-groups of fi ve rats 
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each receiving either compound for 1 day (acute dose) 
or for 7, 14, 21, and 28 days (sub-acute doses, see 
Table 1). Controls were kept in identical conditions, 
but did not receive pesticide treatment.

The experiment was approved by the Ethics 
Committee of Dr B. R. Ambedkar University 
Department of Zoology, Agra, India.

Experimental compounds

Technical-grade cypermethrin and beta-cyfl uthrin 
(95 % purity) were obtained from Bayer India Ltd., 
Mumbai, and their acute oral LD50 was calculated as 
416.98 mg kg-1 and 354.8 mg kg-1 body weight (b.w.), 
respectively, based on earlier research (3, 8, 9).

Dose administration and tissue collection

The animals were receiving pyrethroids orally. The 
acute, one-day dose of cypermethrin was 41.70 mg 
kg-1 b.w. and of beta-cyfl uthrin 35.48 mg kg-1 b.w. (0.1 
LD50), while sub-acute doses were obtained by 
dividing the acute dose by the number of treatment 
days (Table 1).

The rats were killed the day after the last day of 
treatment, their liver excised immediately, placed in 
physiological saline (pH 7.4), mechanically 
homogenised, and then processed as per standard 
protocols for biochemistry tests, including 
aminotransferases (ALT and AST), ALP, LDH, hepatic 
glycogen, total proteins, total lipids, cholesterol, 
phospholipids, and free fatty acids following 
procedures described elsewhere (10-18). These 
biochemical tests were performed using related 
diagnostic kits and an automatic biochemistry analyser 
(Erba Diagnostics Mannheim GmbH, Germany).

Liver histology

Liver was fi xed in Carnoy’s fi xative for fi ve hours 
(19), washed, dehydrated, and embedded in paraffi n 
wax (56 °C melting point). It was then cut in 5 μm 
sections and stained with haematoxylin and eosin to 
inspect for histoarchitectural changes using a Motic 
microscope at 400x and 1000x magnifi cation (Motic 
Opticals Ltd., China) (20, 21).

Statistical analysis

Biochemistry data were analysed for difference in 
means using the SPSS version 11.5 for Windows 
ANOVA, followed by Dunnett’s test.

RESULTS

Biochemical changes

Rats treated with either cypermethrin or beta-
cyfluthrin showed a significant increase in 
aminotransferase (AST and ALT) and dehydrogenase 
(LDH) activity and a decrease in hepatic phosphatases 
(ALP). They also showed an increase in liver total 
lipids, cholesterol, phospholipids, and free fatty acids 
and a drop in glycogen and total protein levels. These 
changes were more pronounced in rats treated with 
beta-cyfl uthrin than with cypermethrin (Tables 2-
11).

Histopathological liver changes

Histopathological examination of the liver from 
treated animals revealed various cellular and lobular 
abnormalities, including intralobular vein (ILV) 
membrane dilation, presence of hepatocytes in ILV, 
cytoplasmic vacuolisation, multinuclear cells, nuclear 
polymorphisms, nuclear vacuolisation, hepatocyte 
membrane damage, nuclear division, nuclear 
eccentricity, pyknosis, necrosis, and karyorrhexis.

These abnormalities were more pronounced in 
animals receiving beta-cyfl uthrin acutely and sub-
acutely (Figure 1a-v).

DISCUSSION

Mammalian liver, by virtue of its unique relationship 
with the gastrointestinal tract and its role in xenobiotic-
metabolism, is a target organ of xenobiotic stress. 
Disturbed liver homeostasis under such stress is 
suffi cient to alter normal body physiology of any 
organism (22). Liver is a hub for protein synthesis, 
regulating cell functions such as maintenance of 
cellular rigidity, fl ow management of material through 
cell membranes, catalysis of an extraordinary range 
of chemical reactions, regulation of metabolic 
concentration, and arrangement of nuclear material to 
control gene function (23, 24). Protein depletion 
observed in the present study due to the lysis of 
structural proteins is evident histologically as 
hepatocellular membrane damage, caused by the 
interference of experimental compounds and their 
toxic metabolic intermediates (3, 25-27).

Elevated ALT and AST in the present study point 
toward active utilisation of amino acids in energy-
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Figure 1a to 1v  Histoarchitecture of Wistar rat liver; (a) control albino rat (400x); (b) control albino rat (1000x); (c) after 
acute (1-day) cypermethrin treatment (400x); (d) after acute (1-day) cypermethrin treatment (1000x); (e) after 
sub-acute (7-day) cypermethrin treatment (400x); after sub-acute (7-day) cypermethrin treatment (1000x); (g) 
after sub-acute (14-day) cypermethrin treatment (400x); after sub-acute (14-day) cypermethrin treatment 
(1000x); (i) after sub-acute (21-day) cypermethrin treatment (400x); (j) after sub-acute (21-day) cypermethrin 
treatment (1000x); (k) after sub-acute (28-day) cypermethrin treatment (400x); (l) after sub-acute (28ds) 
cypermethrin treatment (1000x); (m) after acute (1-day) beta-cyfl uthrin treatment (400x); (n) after acute (1-
day) beta-cyfl uthrin treatment (1000x); (o) after sub-acute (7-day) beta-cyfl uthrin treatment (400x); (p) after 
sub-acute (7-day) beta-cyfl uthrin treatment (1000x); (q) after sub-acute (14-day) beta-cyfl uthrin treatment 
(400x); (r) after sub-acute (14-day) beta-cyfl uthrin treatment (1000x); (s) after sub-acute (21-day) beta-cyfl uthrin 
treatment (400x); (t) after sub-acute (21-day) beta-cyfl uthrin treatment (1000x); (u) after sub-acute (28-day) 
beta-cyfl uthrin treatment (400x); (v) after sub-acute (28-day) beta-cyfl uthrin treatment (1000x)
ILV = intralobular vein, HCC = hepatic cord cells, INS = irregular nuclear shapes, NV = nuclear vacuolization, 
DN = dividing nucleus, TN = trinucleate condition, PN = pycnotic nucleus, CV = cytoplasmic vacuolization,N 
= necrosis, ES = eccentric nucleus
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Table 1 Oral administration of cypermethrin and beta-cyfl uthrin as per treatment schedule

Days of treatment Dose / mg kg-1 day-1

Cypermethrin Beta-cyfl utherin
1 41.70 35.48
7 5.96 5.07
14 2.98 2.53
21 1.99 1.69
28 1.50 1.27

Table 2 Liver ALT (U L-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of 
treatment

Type of treatment Dose / mg kg-1 day-1 Hepatic ALT
Mean ± SD

F-value

Acute 1
Control --- 323.95±2.17

Cypermethrin 41.70 352.01±3.62*** 37.19***
Beta-cyfl uthrin 35.48 359.29±3.20***

Sub acute

7
Control --- 318.50±2.40

Cypermethrin 5.96 346.24±3.23*** 30.43***
Beta-cyfl uthrin 5.07 351.08±3.76***

14
Control --- 319.54±3.04

Cypermethrin 2.98 344.78±4.15*** 17.22***
Beta-cyfl uthrin 2.53 347.39±3.85***

21
Control --- 322.82±1.73

Cypermethrin 1.99 339.91±4.00** 9.50**
Beta-cyfl uthrin 1.69 342.24±4.06**

28
Control --- 320.05±2.44

Cypermethrin 1.50 331.09±2.41* 8.39**
Beta-cyfl uthrin 1.27 335.91±3.45**

*=p<0.05,**=p<0.01,***=p<0.001 vs. control

Table 3 Liver AST (U L-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of 
treatment

Type of treatment Dose / mg kg-1 day-1 Hepatic AST
Mean ± SD

F-value

Acute 1
Control --- 267.48±3.38

Cypermethrin 41.70 296.33±4.88*** 22.64***
Beta-cyfl uthrin 35.48 302.33±3.27***

Sub acute

7
Control --- 272.03±2.56

Cypermethrin 5.96 298.42±5.14** 17.22***
Beta-cyfl uthrin 5.07 303.71±4.15***

14
Control --- 270.73±3.37

Cypermethrin 2.98 294.46±4.31** 13.71***
Beta-cyfl uthrin 2.53 298.97±4.52***

21
Control --- 272.52±2.92

Cypermethrin 1.99 290.19±4.99* 8.47**
Beta-cyfl uthrin 1.69 297.34±4.96**

28
Control --- 268.58±3.79

Cypermethrin 1.50 280.53±4.82NS 6.40*
Beta-cyfl uthrin 1.27 291. 70±5.01**

*=p<0.05,**=p<0.01,***=p<0.001 vs. control

Bhushan B, et al. EFFECTS OF CYPERMETHRIN AND BETA-CYFLUTHRIN ON RAT LIVER
Arh Hig Rada Toksikol 2013;64:57-67



61

Figure 2 Structure of cypermethrin Figure 3 Structure of beta-cyfl uthrin

Table 4 Liver ALP (U L-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic ALP
Mean ± SD

F-value

Acute 1
Control --- 527.31±3.81

Cypermethrin 41.70 503.99±4.18** 13.26***
Beta-cyfl uthrin 35.48 497.98±4.72***

Sub acute

7
Control --- 526.64±4.41

Cypermethrin 5.96 504.31±3.95** 12.01**
Beta-cyfl uthrin 5.07 500.88±3.72**

14
Control --- 526.23±3.22

Cypermethrin 2.98 512.81±2.36** 12.59**
Beta-cyfl uthrin 2.53 508.46±2.12**

21
Control --- 526.42±3.20

Cypermethrin 1.99 513.54±3.37* 8.32**
Beta-cyfl uthrin 1.69 508.06±3.23**

28
Control --- 523.88±5.06

Cypermethrin 1.50 508.83±3.27* 7.03**
Beta-cyfl uthrin 1.27 502.43±3.94**

*=p<0.05,**=p<0.01,***=p<0.001 vs. control

Table 5 Liver LDH (U L-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic LDH
Mean ± SD

F-value

Acute 1
Control --- 709.46±2.51

Cypermethrin 41.70 730.71±3.45*** 23.12***
Beta-cyfl uthrin 35.48 738.20±3.26***

Sub acute

7
Control --- 710.51±3.56

Cypermethrin 5.96 729.94±3.39** 14.08***
Beta-cyfl uthrin 5.07 736.96±3.98***

14
Control --- 706.01±3.58

Cypermethrin 2.98 726.12±3.64** 12.63**
Beta-cyfl uthrin 2.53 732.70±4.46***

21
Control --- 711.67±3.57

Cypermethrin 1.99 722.62±3.02NS 8.11**
Beta-cyfl uthrin 1.69 730.11 ±3.16**

28
Control --- 711.92±3.94

Cypermethrin 1.50 716.74±3.12NS 2.25NS

Beta-cyfl uthrin 1.27 722.04±3.00NS

*=p<0.05,**=p<0.01,***=p<0.001 vs. control
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Table 6 Liver glycogen (mg g-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic glycogen
Mean ± SD

F-value

Acute 1
Control --- 6.36±0.06 

Cypermethrin 41.70 5.95±0.07** 15.31***
Beta-cyfl uthrin 35.48 5.83±0.08***

Sub acute

7
Control --- 6.37±0.05 

Cypermethrin 5.96 6.03±0.05** 16.46***
Beta-cyfl uthrin 5.07 5.96±0.05***

14
Control --- 6.35±0.04 

Cypermethrin 2.98 6.12±0.05* 8.41**
Beta-cyfl uthrin 2.53 6.08±0.05**

21
Control --- 6.40±0.04 

Cypermethrin 1.99 6.24±0.04* 6.54*
Beta-cyfl uthrin 1.69 6.19±0.05**

28
Control --- 6.34±0.05 

Cypermethrin 1.50 6.26±0.05NS 1.05NS 
Beta-cyfl uthrin 1.27 6.25±0.05NS 

*=p<0.05,**=p<0.01,***=p<0.001 vs. control

Table 7 Liver total proteins (μg mL-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic total 
proteins  Mean ± SD

F-value

Acute 1
Control --- 111.8±2.08

Cypermethrin 41.70 78.8±3.56*** 51.44***
Beta-cyfl uthrin 35.48 70.6±3.28***

Sub acute

7
Control --- 109±2.51

Cypermethrin 5.96 81.6±3.61*** 24.59***
Beta-cyfl uthrin 5.07 78.4±3.89***

14
Control --- 109.2±1.93

Cypermethrin 2.98 91.63±3.19** 21.98***
Beta-cyfl uthrin 2.53 84.6±2.84***

21
Control --- 107.8±2.52

Cypermethrin 1.99 95.8±3.06* 10.81**
Beta-cyfl uthrin 1.69 89.8±2.76**

28
Control --- 108.8±3.06

Cypermethrin 1.50 96.6±2.34* 9.36**
Beta-cyfl uthrin 1.27 92.4±2.91**

*=p<0.05,**=p<0.01,***=p<0.001 vs. control

yielding metabolic processes such as gluconeogenesis. 
Aminotransferases are sensitive inductors of 
hepatocellular damage under oxidative stress caused 
by xenobiotics, which histologically presented as 
cytoplasmic vacuolisation, karyolysis, and karyorrhexis 
in this study. The increased activity of hepatic 
aminotransferases in our study reflects genetic 
abnormality in their production in order to overcome 
pyrethroid-induced oxidative stress (28-34).

The lower hepatic ALP may also be a consequence 
of cell membrane damage. ALP is an important 

hepatocyte lysosomal enzyme with a crucial role in 
the metabolism and biosynthesis of energy 
macromolecules for different cellular functions in the 
liver, as it catalyses the splitting of phosphoric esters. 
Membrane damage in the present study might have 
caused leakage of this enzyme from hepatocytes into 
the blood stream. As a result, normal hepatocellular 
functions stopped, leading to pathological changes 
such as pyknosis and necrosis (33, 35-37).

Hepatic LDH is an important oxidative enzyme in 
carbohydrate metabolism and it catalyses the conversion 
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of pyruvate into lactate. Its enhanced activity under 
pesticide stress in the present study was caused by 
hypoxic conditions that shifted normal aerobic 
respiration towards anaerobic (5, 29, 33, 38).

The drop in hepatic glycogen was a consequence 
of abruptly increased catabolism to meet higher 
pyrethroid-induced energy demands. Undoubtedly, 
the hypoxic condition is responsible for incomplete 
energy output through glycolysis and Kreb’s cycle. 
Hypoxia may be responsible for necrotic lesions (26-
27, 39, 40-41).

Increased lipogenesis refl ects abnormal carbohydrate 
metabolism. It led to excessive conversion of pyruvate 
to free fatty acid. Increased cholesterol is likely to have 
substantially contributed to the total lipid levels in 
treated rats (39, 42) and may have played a role in the 
significant increase in phospholipid content and 
abnormal ALP (37, 39, 42, 43).

Our fi ndings suggest that both pesticides strongly 
disrupt normal hepatic function in rats. Hepatotoxic 
properties of cypermethrin have already been 
described in mice (44). The major fi nding of our 

Table 8 Liver total lipids(mg g-1 tissue) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic total lipids
Mean ± SD

F-value

Acute 1
Control --- 47.11±1.63

Cypermethrin 41.70 52.80±2.39NS 3.77”
Beta-cyfl uthrin 35.48 55.17±2.31*

Sub acute

7
Control --- 46.81±1.43

Cypermethrin 5.96 59.27±3.31* 8.63**
Beta-cyfl uthrin 5.07 63.40±3.60**

14
Control --- 47.36±1.95

Cypermethrin 2.98 60.13±2.67** 10.89**
Beta-cyfl uthrin 2.53 62.89±2.82**

21
Control --- 47.63±2.54

Cypermethrin 1.99 59.07±3.87” 4.82*
Beta-cyfl uthrin 1.69 62.18±3.89*

28
Control --- 47.79±2.96

Cypermethrin 1.50 54.92±3.11NS 3.50”
Beta-cyfl uthrin 1.27 59.42±3.33*

*=p<0.05,**=p<0.01,***=p<0.001 vs. control

Table 9 Liver cholesterol (mg per 100 mL) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic cholesterol
Mean ± SD

F-value

Acute 1
Control --- 100.91±3.59 

Cypermethrin 41.70 121.92±5.24* 8.27**
Beta-cyfl uthrin 35.48 127.49±5.57**

Sub acute

7
Control --- 102.74±3.61 

Cypermethrin 5.96 126.20±6.01* 8.93**
Beta-cyfl uthrin 5.07 133.80±6.18**

14
Control --- 102.60±2.94

Cypermethrin 2.98 131.39±5.12** 21.39***
Beta-cyfl uthrin 2.53 146.62±5.93***

21
Control --- 104.26±2.01 

Cypermethrin 1.99 115.19±3.56* 6.57*
Beta-cyfl uthrin 1.69 119.60±3.43**

28
Control --- 101.1 0±2.59 

Cypermethrin 1.50 108.78±2.89NS 5.52*
Beta-cyfl uthrin 1.27 113.86±2. 71*

*=p<0.05,**=p<0.01,***=p<0.001 vs. control
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experiment is that beta-cyfluthrin has a greater 
hepatotoxic potential than cypermethrin. The 
difference in toxicity between the two stems from 
differences in their structure, that is, to the presence 
of a fl uorine atom in beta-cyfl uthrin (Figures 2 and 3). 
Fluorinated hydrocarbons undergo l imited 
biotransformation and can affect cell enzymes, cell-
cell communication, membrane transport, and energy 
production (45). The increased toxic potential of 
fl uorine is due to its unique chemical properties. The 

fl uorine atom has a Van der Waals radius of 1.35 Å, 
which is similar to oxygen (1.40 Å) and which makes 
fl uorine isosterically similar to the hydroxyl group with 
which it shares some properties (46). In addition, 
fl uorine has a higher electronegativity (4.0) than other 
halogens. Higher electronegativity strongly polarises 
the carbon-fl uorine bond, making it diffi cult to break. 
This renders fl uorinated hydrocarbons very stable and 
therefore more toxic (47).

Table 10 Liver phospholipids (mg mL-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic 
phospholipids

Mean ± SD

F-value

Acute 1
Control --- 1.77 ±0.02

Cypermethrin 41.70 1.96±0.03*** 24.56***
Beta-cyfl uthrin 35.48 2.01±0.03**

Sub acute

7
Control --- 1.77±0.02 

Cypermethrin 5.96 1.95±0.03** 15.82***
Beta-cyfl uthrin 5.07 2.00±0.04**

14
Control --- 1.79±0.02

Cypermethrin 2.98 1.90±0.02** 15.30***
Beta-cyfl uthrin 2.53 1.97±0.03**

21
Control --- 1.79±0.02 

Cypermethrin 1.99 1.88±0.03* 5.26*
Beta-cyfl uthrin 1.69 1.90±0.03*

28
Control --- 1.78±0.02 

Cypermethrin 1.50 1.81±0.02NS 1.51NS

Beta-cyfl uthrin 1.27 1.84±0.03NS

*=p<0.05,**=p<0.01,***=p<0.001 vs. control

Table 11 Liver free fatty acids (mg g-1) following acute and sub-acute cypermethrin and beta-cyfl uthrin treatment

Type of dose Days of treatment Type of treatment Dose / mg-kg-1 day-1 Hepatic free fatty 
acids

Mean ± SD

F-value

Acute 1
Control --- 0.75±0.01 

Cypermethrin 41.70 0.93±0.03** 22.00***
Beta-cyfl uthrin 35.48 1.01±0.04***

Sub acute

7
Control --- 0.77±0.01 

Cypermethrin 5.96 0.88±0.03** 11.76**
Beta-cyfl uthrin 5.07 0.91±0.02**

14
Control --- 0.74±0.01

Cypermethrin 2.98 0.81±0.02* 6.15*
Beta-cyfl uthrin 2.53 0.83±0.03*

21
Control --- 0.74±0.01 

Cypermethrin 1.99 0.79±0.02NS 4.77NS

Beta-cyfl uthrin 1.69 0.83±0.03*

28
Control --- 0.75±0.01 

Cypermethrin 1.50 0.78±0.02NS 1.01NS

Beta-cyfl uthrin 1.27 0.78±0.02NS

*=p<0.05,**=p<0.01,***=p<0.001 vs. control
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Future studies could involve still higher mammalian 
groups with more changes at the level of side chains 
and groups, which would help to understand more 
complex structure-activity relationships.
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Sažetak

BIOKEMIJSKE I HISTOLOŠKE PROMJENE U JETRIMA ŠTAKORA UZROKOVANE 
CIPERMETRINOM I BETA-CIFLUTRINOM

Primjena piretroida cipermetrina i beta-cifl utrina veoma je raširena diljem svijeta. Nakon što smo odredili 
njihov LD50 (416,98 mg kg-1, odnosno 354,8 mg kg-1 tjelesne mase) ispitali smo njihovu toksičnost u jetrima 
Wistar štakora koji su primili jednokratnu akutnu (0,1 LD50), odnosno odgovarajuće subakutne doze 
pesticida (0,1 LD50 kumulativno tijekom 7, 14, 21, odnosno 28 dana). Za markere toksičnosti uzeli smo 
jetrene enzime AST, ALT, LDH, ALP, glikogen, ukupne proteine, ukupne lipide, kolesterol, slobodne masne 
kiseline te fosfolipide. Razine AST-a, ALT-a, LDH-a, ukupnih lipida, kolesterola, fosfolipida i slobodnih 
masnih kiselina u homogenatu jetara bile su povišene u štakora izloženih piretroidima u odnosu na kontrolne 
štakore. S druge strane, razine proteina, glikogena i ALP-a bile su niže, vjerojatno zbog lize strukturnih 
proteina i curenja enzima u krvotok. Biokemijski nalazi potvrdili su histološke promjene na jetrima poput 
vakuolizacije citoplazme, polimorfi zama jezgara, ekscentričnih jezgara, kariolize, karioreksije i sinusoidnih 
proširenja. Beta-cifl utrin se pritom pokazao toksičnijim od cipermetrina, što je vjerojatno povezano s 
prisutnosti atoma fl uora u beta-cifl utrinu.
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