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One of  the adverse effects of  cisplatin (CIS) treatment is its reproductive toxicity, which limits its clinical use in male patients. The aim 
of  our study was to investigate the potential protective effects and mechanisms of  chlorogenic acid (CHA), a well-known antioxidant and 
anti-inflammatory polyphenol, in a CIS-induced testicular toxicity model. To this end we divided 30 Sprague-Dawley rats into five groups: 
control and four groups receiving either CHA alone (3 mg/kg), CIS alone (5 mg/kg), or their weaker and stronger combinations: CIS+CHA 
(1.5 mg/kg) and CIS+CHA (3 mg/kg), respectively. In the combination groups the rats first received a single 5 mg/kg dose of  CIS, 
followed by either 1.5 or 3 mg/kg of  CHA administered intraperitoneally for three consecutive days. Testicular tissues were harvested on 
the fifth day of  the experiment. The level of  testicular oxidative stress and inflammation induced by CIS and the histopathological changes 
observed were restored to normal following treatment with both doses of  CHA. Furthermore, treatment with CHA led to the regeneration 
of  Nrf2 and HO-1 levels, which had been suppressed by CIS. Consequently, the levels of  endoplasmic reticulum stress and apoptosis 
were reduced. These findings indicate that CHA may counter the reproductive toxicity of  CIS and may therefore serve as its add-on in 
cancer therapy.
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Cisplatin (CIS) is one of  the most common agents in the treatment 
of  lung, ovarian, and head and neck tumours (1). Its antitumoral 
activity is owed to its potential to form intra- and inter-crosslinks in 
the DNA helical structure (2). Such formation of  DNA adducts in 
cancer cells disrupts the nuclear function, which in turn causes cell 
cycle arrest and apoptosis (3). Furthermore, recent studies have 
demonstrated that CIS-induced production of  reactive oxygen species 

(ROS) contributes to its antitumoral activity (4, 5). However, like other 
chemotherapeutics, CIS can damage normal cells and be nephro-, 
oto-, hepato-, reno- and reprotoxic (1, 3). Experimental studies have 
demonstrated that CIS exerts its detrimental effects on male 
reproductive organs by suppressing the antioxidant system, which is 
comprised of  superoxide dismutase (SOD), glutathione peroxidase 
(GPx), and glutathione (GSH). This process results in lipid 
peroxidation (LPO) and increased levels of  antigenic intermediates 
such as malondialdehyde (MDA) (1, 5). CIS-induced oxidative stress 
(OS) also accelerates inflammatory cell damage by activating the 
nuclear factor kappa-B (NF-κB) pathway and by increasing the levels 
of  pro-inflammatory cytokines, including interleukin-6 (IL-6) (3). 
Furthermore, CIS can reduce circulating testosterone levels by 
suppressing the expression of  the steroid acute regulatory protein, 
which in turn leads to changes in testicular morphology characterised 
by impaired spermatogenesis (1). This may limit clinical treatment 
options and result in chronic subfertility and infertility (6).

Some studies have therefore proposed that antioxidant molecules 
may be beneficial in preventing CIS-induced tissue toxicity (5, 7). 
Considering, however, that synthetic antioxidants and anti-
inflammatory molecules can damage healthy tissue in chronic use, 

Corresponding author: Selim Demir, Karadeniz Technical University Faculty of  
Health Sciences, Department of  Nutrition and Dietetics, 61080 Trabzon, Turkey, 
E-mail: selim-demir@hotmail.com, selim.demir@ktu.edu.tr, ORCID: 0000-0002-
1863-6280

Ayazoğlu Demir E, et al. Chlorogenic acid protects against cisplatin-induced testicular damage: a biochemical and histological study 
Arh Hig Rada Toksikol 2025;76:130−137



131Ayazoğlu Demir E, et al. Chlorogenic acid protects against cisplatin-induced testicular damage: a biochemical and histological study 
Arh Hig Rada Toksikol 2025;76:130−137

research has shifted interest to secondary metabolites originating from 
natural products (8). One such natural product is chlorogenic acid 
(CHA), a polyphenol found in coffee, carrot, kiwi, tea, and pear (9). 
It has the potential to modulate the nuclear factor-erythroid 2-related 
factor 2 (Nrf2) pathway (10–12), which controls the expression of  
antioxidative enzymes, including SOD, GPx, and haem oxygenase 1 
(HO-1) involved in maintaining redox homeostasis in cells (13). As 
this pathway has been reported to be inhibited by CIS (14–16), one 
way to eliminate chemotherapy-induced healthy tissue toxicity is to 
restore it. However, a cautious approach is warranted, because Nrf2 
may inadvertently improve the survival of  cancer cells in an organism 
and therefore increase resistance to chemotherapy (13). Although the 
beneficial effects of  CHA against testicular damage caused by 
chemicals such as tamoxifen, methotrexate, and tunicamycin have 
been reported earlier (17–19), no study has yet demonstrated the 
effects of  CHA against CIS-induced male reprotoxicity. The aim of  
our study was to address this gap by investigating the protective effects 
of  CHA against CIS in testicular tissue and to evaluate its therapeutic 
potential.

MATERIALS AND METHODS

Animals

A total of  30 male Sprague-Dawley rats (200–220 g) were 
obtained from the Karadeniz Technical University Surgery 
Application and Research Centre. The animals were housed there 
under standard conditions (22±1 °C and a 12 h dark/light cycle) 
with free access to food and water. This study was approved by the 
Karadeniz Technical University Ethics Committee for Experimental 
Animals (approval no. 2022/46), and all experiments were 
performed with a humane approach in accordance with the ARRIVE 
guidelines (20) and EU Directive 2010/63/EU (21).

Experimental procedure

After one-week of  adaptation, the rats were divided into five 
groups of  six, all of  which were receiving intraperitoneal injections. 
The control group received a saline on the 1st day and 10 % dimethyl 
sulphoxide (DMSO) for the following three days. The CHA group 
received saline on the 1st day and 3 mg/kg of  CHA (dissolved in 
10 % DMSO) for the following three days. The CIS group received 
a single 5 mg/kg dose of  CIS (dissolved in saline) on the 1st day and 
10 % DMSO for the following three days. The CIS + low-dose 
CHA group received CIS as described above on the 1st day and CHA 
(1.5 mg/kg) injection for the following three days. The CIS + high-
dose CHA group received CIS as described above on the 1st day, 
followed by CHA (3 mg/kg) for the following three days.

The CIS dose used in this study was based on previous reports 
of  its testicular toxicity in experimental studies (22, 23). The choice 
of  the relatively low CHA doses (1.5 or 3 mg/kg) was based on the 
wish to avoid adverse effects reported elsewhere (24, 25) and on 
previous reports confirming their effectiveness (26–28). The five-day 

duration of  the experiment was based on reports indicating that the 
intraperitoneal application of  herbal phytochemicals elicits 
therapeutic effects in models of  CIS-induced acute toxicity within 
this time frame (22, 23, 29, 30).

Sample collection

Four days after the initial injection, all animals were euthanised 
by exsanguination under general anaesthesia with ketamine (60 mg/
kg) and xylazine (10 mg/kg). Testicles were removed immediately 
and one half  stored at -80 °C, while the other half  was fixed in 
Bouin’s solution.

Tissue preparation

Testicular tissues (approximately 30 mg) were homogenised in 
phosphate-buffered saline (PBS) (pH 7.4), centrifuged at 1800×g 
and 4 °C for 10 min, and protein levels in the resulting supernatants 
determined with a commercial Pierce BCA Protein Assay Kit 
(Thermo Scientific, Rockford, IL, USA) using bicinchoninic acid 
(BCA) as described by Smith et al. (31). Briefly, 25 µL of  serially 
diluted bovine serum albumin (BSA) standards and supernatants 
(diluted ten-fold with PBS) were dispensed into a 96-well microplate, 
200 µL of  BCA working reagent was added to each well and left to 
incubate at 37 °C for 30 min. The absorbance of  the standards and 
supernatants was read on a spectrophotometer (VersaMax 
microplate reader, Molecular Devices, Sunnyvale, CA, USA) at 
562 nm and plotted against concentration graph for the BSA 
standards to measure protein content in the samples.

Determination of  lipid peroxidation

The LPO level in supernatants was determined by quantifying 
MDA levels as described elsewhere (32). The standard used was 
1,1,3,3-tetramethoxypropane. The absorbances of  the samples and 
standards were measured at a wavelength of  532 nm, and tissue 
MDA levels are expressed in nmol/mg of  protein.

Determination of  antioxidative capacity

The levels of  antioxidative enzymes and Nrf2 were determined 
with commercial ELISA kits provided by Bostonchem (Boston, 
MA, USA) [SOD (Cat No.: BLS-8178Ra), GPx (Cat No.: BLS-
2222Ra), and GSH (Cat No.: BLS-8577Ra)] or by Finetest (Wuhan, 
China) [Nrf2 (Cat No.: ER0666) and HO-1 (Cat No.: ER1041)] and 
are expressed in ng, pg, µg, pg, and ng per mg of  protein, respectively. 
Briefly, the primary stock standard provided by the manufacturers 
was subjected to serial dilution. Subsequently, 100 µL of  both 
samples and standards were added to each well of  an antibody-
coated plate, after which the plate was incubated on a shaker at 
37 °C for 90 min. The wells were then washed, added 100 µL of  
biotin-labelled antibody solution, and incubated for another 60 min. 
Followed the second washing step, adding 100 µL of  streptavidin-
HRP solution, and incubation for another 30 min. After the third 
washing step, we added 90 µL of  TMB substrate solution to each 
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well, and repeated the incubation for another 20 min. Finally we 
added 50 µL of  stop solution to each well to halt the reaction. The 
absorbances of  the samples and standards were read on the 
VersaMax plate reader (Molecular Devices) at a wavelength of  
450 nm and their levels calculated as described elsewhere (22).

Determination of  inflammation parameters

To determine inflammation parameters we used the Finetest 
ELISA kit for NF-κB p65 (Cat No.: ER1187) or the Bostonchem 
kit for IL-6 (Cat No.: BLS-1158Ra) and myeloperoxidase (MPO) 
(Cat No.: BLS-1661Ra). The levels of  NF-κB p65, IL-6, and MPO 
are expressed in pg, pg, and ng per mg of  protein, respectively.

Determination of  endoplasmic reticulum stress and apoptosis

Commercial ELISA kits (Bostonchem, Boston, MA, USA) were 
also used to measure the levels of  the heat shock protein family A 
member 5 (HSPA5) (Cat No.: BLS-6834Ra), activating transcription 
factor 6 (ATF6) (Cat No.: BLS-9545Ra), DNA damage-inducible 
transcript 3 (DDIT3) (Cat No.: BLS-8868Ra), and cleaved caspase-3 
(CASP3) (Cat No.: BLS-1528Ra). The levels of  all ERS and 
apoptosis markers are expressed in ng per mg of  protein.

Histological analysis

Testicular tissues fixated in Bouin’s solution for 48 h were analysed 
as described elsewhere (23, 33). Briefly, 5 µm-thick sections were cut 
from the prepared paraffin blocks with a microtome (Leica RM2255, 
Wetzlar, Germany), stained with haematoxylin-eosin (H&E), analysed 
by a blinded pathologist under a light high-powered microscope 
(Olympus BX51, Tokyo, Japan) with ×200 magnification, and 
photographed. Maturation of  the germinal epithelium was assessed 

using a modified Johnsen testicular biopsy score (34, 35). A total of  
20 tubules were assessed for each preparation. Each tubule was scored 
in the range from 1 to 10, where 1 indicates complete absence of  
germ cells and 10 maximum spermatogenic activity.

Statistical analysis

The required sample size of  six animals per group was 
determined using the G*Power v 3.1.9.2 statistical software 
(University of  Kiel, Kiel, Germany) to ensure adequate power to 
detect potential significant differences in parameters (1–β=0.8), 
specified effect size of  2.0, implementation of  a two-sided t-test, 
and the sample size ratio of  1.

The obtained data were analysed using the SPSS 23.0 software 
(IBM, Chicago, IL, USA). All values are expressed as group means 
± standard errors of  the mean (SEM). The normality of  the data 
distribution was established with the Shapiro-Wilk test. One-way 
ANOVA and post-hoc Tukey’s test were employed to compare 
normally distributed data and histological scores across all 
experimental groups. The p value of  <0.05 was considered 
statistically significant.

RESULTS

Oxidative stress parameters

Figure 1 shows changes in MDA, SOD, GPx, and GSH levels 
in rat testicular tissue. Treatment with CIS resulted in a significant 
increase in MDA levels (~5.3-fold) and a significant decrease in 
GSH (~5.7-fold), SOD (~2.5-fold), and GPx (~3.1-fold) levels 
compared to control. The three-day treatment with CHA following 
CIS countered these effects in a dose-dependent manner by lowering 

Figure 1 Effects of  CHA (1.5 and 
3 mg/kg) on OS parameters in a 
CIS-induced testicular toxicity rat 
model. Data are presented as 
means ± SEM. **p<0.01 and 
***p<0.001 – significant difference 
from control; #p<0.05, ##p<0.01, 
and ###p<0.001 – significant 
difference from the CIS alone 
group; ++p<0.01 – significant 
difference from the CIS+CHA 
(1.5 mg/kg) g roup.  CHA – 
chlorogenic acid; CIS – cisplatin; 
GPx – glutathione peroxidase; GSH 
– reduced glutathione; MDA – 
malondialdehyde; OS – oxidative 
stress; SEM – standard error of  the 
mean; SOD – superoxide dismutase
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MDA and increasing antioxidative parameters. The administration 
of  the higher CHA dose alone did not result in any adverse effects.

Inflammation parameters

Figure 2 shows a significant rise in testicular NF-κB p65 (~3.1-
fold), IL-6 (~2.8-fold), and MPO (~3.4-fold) levels in rats administered 
with CIS alone compared to control. The three-day administration 
of  CHA countered these effects in a dose-dependent manner. Again, 
the higher CHA dose alone did not have any adverse effects.

ERS and apoptosis

Figure 3 shows that the single CIS dose significantly increased 
HSPA5 (~9.7-fold), ATF6 (~5.0-fold), DDIT3 (~6.0-fold), and 
CASP3 (~2.9-fold) levels compared to control. As with other 
parameters, the three-day CHA administration significantly lowered 
these levels in a dose-dependent manner. Its higher dose alone did 
not result in any adverse effects.

Nrf2/HO-1 pathway

Figure 4 shows that CIS administration resulted in a ~3.0-fold 
suppression of  Nrf2 and ~3.8-fold suppression of  HO-1 compared 
to control. CHA treatment restored them in a dose-dependent manner 
and did not adversely affect these parameters in the CHA group.

Histopathological changes in testicular tissue

Figure 5 shows typical histopathological changes and semi-
quantitative scores on the Johnsen scale across all groups. While 
numerous seminiferous tubule structures with normal spermatogenic 
activity were observed in both the control and high-dose CHA 
group, CIS caused severe necrosis of  the seminiferous tubules, as 
evidenced by the markedly lower Johnsen scores. Treatment with 
low-dose CHA partly improved the spermatogenic activity, 
characterised by a small number of  spermatogonia. Treatment with 
high-dose CHA resulted in a significant improvement in pathological 
findings, as evidenced by higher Johnsen scores.

Figure 2 Effects of  CHA (1.5 and 3 mg/kg) on inflammation parameters in a CIS-induced testicular toxicity rat model. Data are presented as means ± SEM. 
***p<0.001 – significant difference from control; #p<0.05, ##p<0.01 and ###p<0.001 – significant difference from the CIS alone group; ++p<0.01 – 
significant difference from the CIS+CHA (1.5 mg/kg) group. CHA – chlorogenic acid; CIS – cisplatin; IL-6 – interleukin-6; MPO – myeloperoxidase; 
NF-κB – nuclear factor kappa B; SEM – standard error of  the mean

Figure 3 Effects of  CHA (1.5 and 
3 mg/kg) on ERS and apoptosis 
parameters in a CIS-induced 
testicular toxicity rat model. Data 
are presented as means ± SEM. 
*p<0.05, **p<0.01 and ***p<0.001 
– significant difference from 
control; ##p<0.01 and ###p<0.001 
– significant difference from the 
CIS alone group; ++p<0.01 and 
+++p<0.001 – significant difference 
from the CIS+CHA (1.5 mg/kg) 
g r o up.  ATF6  –  a c t iva t i n g 
transcription factor 6; CASP3 – 
c l eaved  caspase -3 ;  CHA – 
chlorogenic acid; CIS – cisplatin; 
DDIT3 – DNA damage-inducible 
transcript 3; ERS – endoplasmic 
reticulum stress; HSPA5 – heat 
shock protein family A (HSP70) 
member 5; SEM – standard error 
of  the mean



134
DISCUSSION

Our findings confirm earlier reports of  CIS toxicity disrupting 
testicular architecture (23, 36, 37) through oxidative stress (23, 36, 
38, 39) as the primary mechanism, which interrupts various signalling 
pathways, Nrf2 in particular (14–16), and triggers inflammation (14, 
36, 40, 41) and ERS-induced apoptosis (42–45) to eventually lead 
to tissue damage (3, 5).

More importantly, CHA delivered on promising findings 
reported earlier in all aspects of  our experiment. In a dose-dependent 
manner it nearly restored redox homeostasis, most likely by 
scavenging free radicals and activating the antioxidant signalling 
pathway, which is in line with antioxidant activity reported earlier 
(25, 46–48). It reactivated the Nrf2 pathway (36), most likely 
inhibited by ERS (44) and consequently reduced inflammatory 
response to CIS (49) and apoptosis, which is consistent with previous 
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Figure 4 Effects of  CHA (1.5 and 3 mg/kg) on the Nrf2/HO-1 pathway in a CIS-induced testicular toxicity rat model. Data are presented as means ± SEM. 
***p<0.001 – significant difference from control; ##p<0.01 and ###p<0.001 – significant difference from the CIS alone group; +p<0.05 – significant 
difference from the CIS+CHA (1.5 mg/kg) group. CHA – chlorogenic acid; CIS – cisplatin; HO-1 – haem oxygenase-1; Nrf2 – nuclear factor erythroid 
2-related factor 2; SEM – standard error of  the mean

Figure 5 Effects of  CHA (1.5 and 3 mg/kg) on testicular tissue architecture in CIS-treated rats (200×). A) control; B) CHA alone (3 mg/kg); C) CIS (5 
mg/kg); D) CIS+CHA (1.5 mg/kg); E) CIS+CHA (3 mg/kg); F) Mean Johnsen scores for all groups. Data are presented as means ± SEM. ***p<0.001 
– significant difference from control; ##p<0.01 and ###p<0.001 – significant difference from the CIS alone group; +++p<0.001 – significant difference 
from the CIS+CHA (1.5 mg/kg) group. CHA – chlorogenic acid; CIS – cisplatin; SEM – standard error of  the mean
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reports of  ERS inhibition and anti-apoptotic (19, 50, 51) as well as 
the anti-inflammatory activity of  CHA (52–54). Eventually, this led 
to marked improvements in testicular tissue findings evidenced by 
higher Johnsen scores. These findings are consistent with previous 
reports indicating the testicular protective effects of  CHA (50, 55).

In conclusion, our study provides initial evidence of  the 
beneficial effects of  CHA against CIS-induced reproductive toxicity. 
These results require further corroboration through comprehensive 
molecular and physiological investigations before clinical 
implementation as an add-on in cancer therapy with CIS.
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Klorogenska kiselina štiti od oštećenja testisa prouzročenog cisplatinom: biokemijska i histološka studija

Jedan od štetnih učinaka cisplatina je njegova reproduktivna toksičnost, koja ograničava kliničku primjenu ovog antitumorskog lijeka u 
muškaraca. Cilj našeg istraživanja bio je ispitati moguće zaštitne učinke i mehanizme djelovanja klorogenske kiseline, poznatog antioksidansa 
i protuupalnog polifenola, na modelu toksičnosti za testise prouzročene cisplatinom. U tu smo svrhu podijelili 30 štakora soja Sprague-
Dawley u pet skupina: kontrolnu skupinu i četiri skupine koje su primale samo klorogensku kiselinu (3 mg/kg), samo cisplatin (5 mg/kg) 
ili njihovu kombinaciju s nižom ili višom dozom klorogenske kiseline (1,5 odnosno 3 mg/kg). U kombiniranim skupinama štakori su prvo 
primili jednokratnu dozu cisplatina (5 mg/kg), a zatim su tri uzastopna dana intraperitonealno primali klorogensku kiselinu u nižoj odnosno 
višoj dozi. Tkivo testisa prikupljeno je petog dana pokusa. Razina oksidacijskoga stresa i upale u testisima izazvane cisplatinom te promjene 
u histološkoj građi vraćene su na normalne vrijednosti nakon primjene obiju doza klorogenske kiseline. Nadalje, primjena klorogenske 
kiseline dovela je do obnove razina Nrf2 i HO-1 nakon prvotne inhibicije cisplatinom. Posljedično su se smanjile razine stresa 
endoplazmatskoga retikuluma i apoptoze. Ovi rezultati upućuju na to da klorogenska kiselina može ublažiti reproduktivnu toksičnost 
cisplatina te stoga poslužiti kao dodatak u liječenju raka.
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