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We present an overview of  the theory of  random measurement errors, focusing on the underlying concepts rather than on a strict 
mathematical formulation. Although the related literature is extensive, one can frequently encounter partly or completely wrong usages 
of  the theory. In many cases, these misuses stem from incomplete understanding of  the basic principles. Our presentation is based on a 
discussion on similarities and differences between this theory and statistics, as they are used differently in analysing the results of  an 
experiment. In statistics, the central parameters are the mean and standard deviation, which are related to a given statistical distribution. 
In the theory of  random measurement errors, the mean has a different meaning, representing the best estimate of  the true value of  a 
measured quantity. The second parameter of  importance is not standard deviation but the uncertainty of  the mean, which sets the 
probability that the true value lies in a given interval around the mean. These conceptual differences are seldom pointed out, which 
sometimes results in doubtful or wrong analyses and presentations of  measurement results. We illustrate our theoretical considerations 
with examples of  proper and improper use of  the theory.
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Before the Renaissance, it was not fully recognised that the 
understanding of  a phenomenon could not be obtained solely by a 
qualitative description of  what had been observed. However, it 
eventually became clear that observations required quantifications, 
i.e., that the final outcome of  an experiment should be expressed 
in numbers. This gave rise to a rapid development of  experimental 
techniques and mathematics required to analyse measurement 
results. In that, one of  the central issues was how to quantitatively 
account for the uncertainties of  numerical values that were assigned 
to given observables, and answering this question eventually resulted 
in the theory of  random measurement errors (TRME).

TRME was developed in the 19th century by mathematicians 
and those experimental scientists who knew mathematics sufficiently 
well. In spite of  the TRME being quite old, its spread though 
different fields of  science and technology has been somewhat 
paradoxical, as the use of  formulae has not always been accompanied 
by an understanding of  their origin and meaning. For instance, at 
many universities, only some students are taught TRME in enough 
depth, whereas the others get acquainted with it briefly and 
superficially. It is also common that mathematics courses for 
students in many fields (e.g., social, medical, biological, or 
biotechnical sciences) are inadequate for coping with the specific 
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mathematical language of  TRME. In consequence, some researchers 
– usually from disciplines that are not mathematically oriented – 
cannot fully distinguish between statistics and TRME, which may 
diminish the quality of  a presentation of  research results.

After so many years of  development, literature abounds with 
articles (1, 2), textbooks (3–5), guides (6), and other documents on 
TRME that nowadays appear on the Internet on a daily basis. The 
goal of  this review is not to summarise or expand the information 
presented in these sources. Instead, we focus on clarifying the 
concepts from which TRME stems to clearly distinguish between 
descriptive statistics and the analysis of  a measurement. Such 
presentations are not common in the literature, which often leads 
to inconsistent analyses of  experimental results due to the lack of  
a clear picture of  what TRME is.

BASIC CONCEPTS OF STATISTICS

Statistical distributions, frequency distributions, and their 
descriptive parameters

Statistics is a mathematical discipline dedicated to properties of  
systems in which a variable can assume different values. For instance, 
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the height of  a person can be a variable, and the corresponding 
statistical system is formed from measured heights within a group 
of  people. Generally, there are two types of  statistics. A priori 
statistics is dedicated to theoretical modelling which provides 
probabilities that a variable will assume given values. Mathematical 
formulae that describe these probabilities are called statistical 
distributions. They are sometimes named after those who derived 
them (e.g., Gaussian distribution, Poisson distribution, Bernoulli 
distribution) and sometimes contain mathematical terminology (e.g., 
gamma distribution, exponential distribution, log-normal 
distribution). A posteriori statistics focuses on measured occurrences 
of  values, which results in frequency distributions. While frequency 
distributions always contain discrete numbers, statistical distributions 
can be expressed either through pairs of  discrete numbers (discrete 
distributions) or as functions (continuous distributions). Comparisons 
of  frequency distributions and statistical distributions are common 
and may lead to a deeper understanding of  given experimental 
results.

Let us consider random variables, i.e., those which assume 
different values solely due to the corresponding probabilities of  
their appearances. Suppose that a variable 𝑥 can assume values 
𝑥1,..., 𝑥n and that the probability of  𝑥 = 𝑥i is equal to p(𝑥i ), where  
0 ≤ p(𝑥i ) ≤ 1. The set of  pairs [𝑥i, p(𝑥i )] then forms a discrete 
statistical distribution of  the variable 𝑥, satisfying the condition  

 (which means that the probability that 𝑥 will 
assume any value is 100 %). As explained above, the values of  p(𝑥i ) 
are calculated theoretically (a priori statistics). We can also carry out 
N measurements of  𝑥 and record, for each i, the number f(𝑥i ) (called 
absolute frequency) of  the appearance of  𝑥i. Using this, we can 
define r(𝑥i ) = f(𝑥i )/N (called relative frequency), which represents 
the experimental probability (a posteriori statistics) of  the appearance 
of  𝑥 i,  sa t i s fy ing   and ,  consequent ly, 

. The set of  pairs [𝑥i,r(𝑥i )] forms a frequency 
distribution.

Statistical properties of  a system are usually expressed through 
descriptive statistical parameters, derived from statistical moments 
ml and Ml (the lth raw moment and central moment, respectively), 
which are calculated as

   [1]
and, 

  [2].

For a frequency distribution, the p(𝑥i ) in the above equations 
(and henceforth), should be replaced with r(𝑥i ).

In most cases, four parameters are used to describe a distribution. 
The first is 𝑥̅ = m1, called the expectation or the mean (value) of  a 
statistical distribution or a frequency distribution, respectively. The 
second is variance V = σ2 = M2, which is basically the mean squared 
deviation of  𝑥 from 𝑥̅. The third is skewness 𝛼3 = M3/σ3, which 

accounts for the asymmetry of  a distribution. The fourth is kurtosis 
𝛼4 = M4/σ4, which is a measure of  the tailedness of  a distribution.

The probability that 𝑥 ≥ 𝑥a and 𝑥 ≤ 𝑥b is calculated as follows:

  [3].

As mentioned before, there are also continuous statistical 
distributions besides the discrete ones. In this case, 𝑥 is a continuous 
variable, and this changes the required mathematics. We define a 
continuous function g(𝑥) ≥ 0, called probability distribution, with a 
property that the probability of  𝑥 being in the interval (𝑥, 𝑥 + d𝑥) 
is given by g(𝑥)d𝑥. This means that  over the range 
where 𝑥 is defined and that [3] changes into

  [4].

Graphically, this is the area under g(𝑥) between 𝑥 = 𝑥a and  
𝑥 = 𝑥b. Equations [1] and [2] change as well, by replacing 𝑥i with 𝑥 
and  with , where the integration is 
carried out over the range where x is defined. The meanings of  𝑥̅, 
σ, α3 and α4 remain the same.

There are two additional parameters which are frequently used 
to describe the main properties of  a distribution. The first is the 
med i an  η  o f  a  d i s t r i bu t ion ,  wh i ch  i s  de f ined  by  
P(𝑥 < η) = P(𝑥 > η) = 1/2. The second is the most probable value 
ν of  𝑥, defined as the point at which there is a maximum of  p(𝑥i ) 
or P(𝑥).

Gaussian distribution as the basis of  TRME

Gaussian or normal distribution is arguably the best-known 
statistical distribution, being applicable in numerous fields of  science 
and technology. Since TRME relies on it, we shall briefly discuss its 
main properties. This is a continuous statistical distribution defined 
as:

 [5].

As shown in Figure 1, g(𝑥) is a symmetrical, bell shaped curve 
peaked at 𝑥.̅ At = 𝑥̅± σ, there are inflexion points, i.e., the curvature 
of  g(𝑥) changes from convex to concave. The shape of  the curve 
is completely determined by 𝑥̅ and σ, whereas 𝛼3 = 0, 𝛼4 = 3, and 
η = ν = 𝑥̅.

One of  the properties of  Gaussian distribution is that 
P(𝑥 – kσ < 𝑥 < 𝑥̅ + kσ) is about 0.68, 0.95, and 0.98 for k = 1, 2, 
and 3, respectively. Of  course, one can choose any k (called coverage 
factor) and calculate the corresponding P, but the above integer 
values are most commonly used in TRME.
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STATISTICAL ANALYSES OF MEASUREMENT DATA

Types of  measurement errors

Measurement errors can be systematic or random. Systematic 
errors are specific of  every measurement procedure and are usually 
manifested as offsets in measured results, e.g., when an instrument 
is showing some value in the absence of  any input. These errors 
are not uncommon – and are solved by removing a given offset 
technically or analytically – but are not in the domain of  TRME 
and are therefore not addressed in this review. TRME deals with 
random errors, which originate from limited accuracy of  
measurement instruments and procedures. Random errors do not 
produce offsets and are manifested as symmetric departures of  
measurement results from 𝑥̅, with r(𝑥i ) following closely the 
Gaussian distribution.

TRME versus statistics

In its approach and mathematical methods, TRME is based on 
statistics. Hence, formulae used in TRME and statistics are similar 
and sometimes even the same, but their meanings may be quite 
different. Suppose that a quantity x is measured repeatedly n times. 
In TRME, p(𝑥i ) = 1/n, and Equation [1] gives

    [6],

while the use of  Equation [2] results in

   [7].

Let us first discuss 𝑥̅. We have used a general formula from 
statistics to calculate it and have used the same name (the mean). 
However, the meaning of  𝑥 ̅in TRME is not the same as in statistics, 
where 𝑥̅ is simply the average value of  𝑥. In TRME, 𝑥̅ is the best 
estimate for the true value ξ of  𝑥. Since ξ cannot be determined – 
due to the limitations of  measurement instruments and procedures 

– taking ξ ≈ 𝑥̅ is the best we can do. The central quantity in TRME 
is the uncertainty u in this approximation, so we can express a 
measurement result as

    [8].

While different names are used for u (e.g., measurement 
uncertainty), its full name – uncertainty of  the mean – reveals its 
meaning more directly. More clearly, we approximate ξ ≈ 𝑥̅, but 
Equation [8] actually says that ξ can be anywhere, with a given 
probability, in a symmetric interval around 𝑥̅. The distribution that 
determines this probability is Gaussian distribution peaked at 𝑥̅. 
This defines 𝑥̅ as the most probable value of  ξ and implies that we 
can use a coverage factor to set the related confidence level. As 
already said, it is common to choose k = 1, 2, or 3, but this is just 
for the sake of  simplicity (as any value of  k can be used).

Now we turn to the meaning and applicability of  σ as given by 
Equation [7]. σ is called the standard deviation of  the population. 
Again, it is useful to spell out the meaning of  σ: the square root of  
the mean squared deviation of  𝑥 from 𝑥 ̅for the complete population 
of  a studied quantity. However, seldom can one collect data for an 
entire population, and n measurements then refer to a sample taken 
from all possible values of  𝑥. It can be shown, but this is outside 
the scope of  this review, that the denominator in Equation [7] is 
actually the number of  independent variables (degrees of  freedom), 
which is reduced by unity in case of  a sample that is smaller than 
the entire population. Hence, the variance of  a sample is given by

  [9].

Since σ and s represent the square roots of  the mean squared 
deviations of  𝑥 from 𝑥̅ for an entire population and a sample, 
respectively, which of  them should be used as u that enters Equation 
[8]? Shall we prefer the use of  s, because we normally measure 
restricted datasets, that is, samples? The answer to this question is: 
neither σ nor s can be used as u in Equation [8]. Just read their names: 
σ and s are measures of  the mean squared deviation of  𝑥 from 𝑥̅ in 
a set of  measurements, nothing more, and u is fundamentally 
different – it is the uncertainty of  the approximation ξ ≈ 𝑥̅. This is 
why it is important to keep in mind the full names of  σ, s, and u, 
because the common short names do not reveal clearly the meaning 
of  these quantities. Of  course, short names are welcome, but one 
should not forget what is behind them. For the rest of  this review, 
we shall focus on u and discuss it from the perspective of  its proper 
meaning, but shall simply call it “uncertainty”.

Propagation of  uncertainty

Before we address u more closely, we ought to discuss one of  
its important properties. Let us suppose that we measure quantities 
𝑞1, 𝑞2,…, 𝑞z directly and obtain ξj = q̅j ± uj for all 1 ≤ j ≤z. Suppose 
also that there is a quantity y = y(𝑞1, 𝑞2,…, 𝑞z ) that has not been 

Figure 1 Probability distribution g(𝑥) of  a random variable 𝑥 for the 
Gaussian distribution with 𝑥̅ = 4.5 and σ = 2.5
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measured directly but can be calculated from 𝑞1, 𝑞2,…, 𝑞z by using 
a formula. Having y̅j and uj, can we find y̅ and uy, the mean and 
uncertainty of  y, respectively? Yes, we can, using the following 
equations:

  [10]

and

  [11].

Equation [10] simply says that y̅ is obtained by inserting the 
values of  q̅j (for all j) in the formula that relates y and q̄̅j. Regarding 
Equation [11], although it can be addressed rigorously from a 
mathematical point of  view, we choose to discuss it more intuitively. 
One can see that uy

2 is a sum of  squared uncertainties (uj
2) of  

individual contributors to y and that each uj
2 is multiplied by a weight 

factor  that determines how much a change of  𝑞j 
affects y. Partial derivatives must be squared in order to conserve 
dimensional consistency. If  we take a look at the expression for 
σ2 = M2 (see Equation [2]), we can see that σ2 is also calculated as a 
weighted sum of  squared individual deviations from 𝑥̅, the weight 
factors being p(𝑥i ). The mathematical similarity between the 
equations for σ2 and uy

2 is not surprising, because both of  these 
quantities are cumulative deviations that result from weighted 
individual contributions.

Uncertainty of  the mean

Equation [6] shows that 𝑥̅ is a function of  𝑥1,…, 𝑥n, where each 
𝑥i has an uncertainty ui. Therefore, we can calculate uncertainty of  
the mean, i.e., u = u𝑥̅, by using Equations [6] and [11] together with 
the symmetries y ↔ 𝑥̅ and qi ↔ 𝑥i. This results in

 [12].

Since 𝑥i is the result of  a single measurement, the question arises 
as to what should be used for its (unknown) uncertainty ui. TRME 
assumes that ui is approximately the same for every i and equal to 
some u0, so that Equation [12] gives u2 = ui

2/n . The next assumption 
is that u0 = s, so the use of  Equation [9] results in

  [13].

We can see that u, s, and σ are interrelated, which is not surprising, 
given the statistical nature of  TRME. However, while s and σ are 
indicators of  how much individual measurement results depart from 
𝑥̅, it is u which tells us how much ξ ≈ 𝑥̅ is reliable. Moreover, the 
approximation ui = u0 = s extends the meaning of  s beyond simple 
statistics, since s in TRME is the average uncertainty of  an individual 
measurement. With this interpretation, the relation u2 = s2/n 

becomes more understandable: if  one carries out n measurements, 
the squared uncertainty will be reduced by a factor of  1/n in 
comparison with a single measurement.

Weighted mean and its uncertainty

Equation [13] covers those experimental results where a direct 
measurement of  an observable is repeated n times in order to reduce 
u. Equation [11] accounts for the u of  a quantity which has not been 
measured directly but is calculated from several directly measured 
observables. The third frequent case is measurement results that 
have different statistical weights.

Suppose that a quantity 𝑥 is measured using different methods 
or in different laboratories and that each of  these measurements 
results in ξj = 𝑥̅j ± uj. If  one wants to compile all of  these results 
and calculate their mean value and its uncertainty, how is this done 
properly? Since some of  the results are more precise than the others, 
one should approach this problem by assigning a statistical weight 
wj to each ξj.

To calculate the weighted mean, i.e., the mean 〈𝑥〉 of  L 
independent contributions, is straightforward, namely

    [14].

It is easy to understand the above expression by recalling that 
this is how one calculates grade point average if  𝑥̅j is a grade point 
and wj the number of  its appearance.

We can now combine Equations [11] and [14] to derive the 
expression for the uncertainty 〈u〉 of  〈𝑥〉, that is,

  [15].

In principle, wj can be defined in many different ways. On the 
other hand, wj = 1/uj

2 is most commonly used, because this choice 
is applicable to many situations and assigns larger weights to results 
which are less uncertain. This definition of  wj transforms Equation 
[14] into

    [16]
and Equation [15] into

    [17].

Maximum absolute uncertainty

There is another parameter which is sometimes calculated in 
order to obtain a more complete insight into measurement results. 
This parameter is called maximum absolute uncertainty and 
represents the maximum absolute departure of  measurement results 
from 𝑥̅.
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Its definition is

   [18].

Since ∆𝑥 is linear in the departure of  𝑥i from 𝑥̅, the maximum 
absolute error ∆y of  y = y = y(q1, q2,…, qz ) contains linear terms, 
and Equation [11] changes into

  [19],

where the absolute values of  ∂y/∂qj ensure that every contribution 
to the sum is positive.

Equations [18] and [19] are also useful when repeated 
measurements always give the same result, for instance, when the 
length of  an object is measured with a ruler of  a limited precision. 
Does the fact that we always obtain the same number mean that 
there is no uncertainty? Obviously not. In this case, we should 
estimate the uncertainty in the sense of  ∆𝑥.

Presentation of  results
An analysis of  experimental results provides numerical values 

of  𝑥̅ (or ȳ or 〈𝑥〉) and u (or ∆𝑥 or ∆y or 〈u〉). Usually, these 
values are used to calculate relative uncertainty

 [20],

which expresses uncertainty as a percentage of  the mean. R is often 
included in the presentation of  a result. For instance, if  we obtain 
𝑥̅ = 4.7823 and u = 0.876, this is usually presented as

    [21].

The number of  digits of  𝑥̅ and u is smaller than the ones we 
have started from. The reason for that becomes clear if  we recall 
the meaning of  u: it sets a Gaussian interval around 𝑥̅ where ξ lies 
with a probability given by the coverage factor. Hence, u is always 
rounded to one digit, as the second digit would represent the 
uncertainty of  an uncertainty, and this would not make much sense. 
The only exception is when the second digit can be rounded to 5, 
and in this case, u  is expressed with two digits (e.g. ,  
u = 0.014827 → u = 0.015). Once u is rounded properly, the number 
of  digits of  𝑥̅ (which are called significant digits) is set accordingly, 
to match the value of  u. For example, ξ = 4.78±0.9 is not correct, 
because 0.08 (the third digit of  the mean) is more than ten times 
smaller than the uncertainty 0.9. Similarly, ξ = 5±0.9 is also wrong, 
since u should not be more precise than 𝑥̅. Using too many digits 
for u and setting the number of  significant digits of  𝑥̅ wrongly are 
the most frequent mistakes in the presentation of  a measurement 
result. There are no strict rules for the number of  digits of  R, 
because R is just an indicator and not a fundamental quantity. The 
number of  digits should, however, be kept low in this case as well 
(e.g., 0.4 %, 7 %, 14 %, 112 %).

There are cases when the result contains very large or very small 
numbers, which can be solved by using the powers of  ten and/or 
unit prefixes. For example, it is more elegant to write ξ = (4.8±0.9) µm 
or ξ = (4.8±0.9) × 10-6 m than ξ = (0.0000048±0.0000009) m.

EXAMPLES OF USES AND MISUSES OF TRME
Let us continue by elaborating the above concepts with examples 

of  uses and misuses of  TRME. The uses refer to recognising the 
nature of  given experimental results, applying proper calculations, 
and expressing the final result correctly. The misuses can be 
numerous, ranging from choosing a wrong formula to misinterpreting 
final results. We cannot address every possible (mis)use of  TRME, 
but the below examples might be useful in handling numerous 
similar situations.

Repeated direct measurements of  a quantity

Suppose that a quantity is measured many times by the same 
instrument and the same method, with a goal to reduce u. For 
instance, one weighs an object repeatedly, every time obtaining a 
slightly different result for the mass. Provided that there are no 
systematic errors, these differences are the result of  the imperfections 
of  the scale and are distributed evenly around the mean value of  
the mass. In order to calculate the mean and its uncertainty, one 
uses Equation [6] and Equation [13], respectively. Then one selects 
the coverage factor to define u in the spirit of  Equation [8], properly 
rounds u and then the mean, calculates R, and presents the result 
as demonstrated in Equation [21]. This is simplest use of  TRME.

Even though σ and s can be calculated from the data, their roles 
are marginal. In fact, to use σ or s instead of  u in Equation [8] is the 
most common mistake, i.e., a typical misuse of  TRME.

Indirect measurements

Suppose that we have to determine the density ρ of  a cylinder 
by measuring its mass μ, diameter d, and height h. Our measurement 
instruments are a calliper (with a precision of  0.05 mm) and a scale 
(with a precision of  1 mg). We measure μ, d, and h about ten times, 
observe small variations due to the imperfections of  the instruments, 
and use Equations [6] and [13] to obtain μ = 28.903±0.004 g, 
d = 23.04±0.07 mm, and h = 12.42±0.04 mm.

We first calculate . Since ρ is a function of  d, 
h, and μ, which are directly measured quantities with their own 
uncertainties, Equation [11] applies and gives

  [22].

By using the coverage factor k = 2 (which means that we multiply 
the result of  Equation [22] by two and thus obtain a confidence 
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level of  ~95 %) and after rounding the result properly, we obtain 
ρ = 5.58±0.08 g/cm3 (R = 1.4 %).

This exemplifies the general method of  calculating the mean 
and uncertainty of  a quantity that has not been measured directly 
but can be calculated from directly measured quantities.

Estimation of  uncertainties

Sometimes it occurs that repeated measurements of  a quantity 
always give the same result. This however, does not mean that there 
is no uncertainty, that the measurements are prefect. The reason for 
always obtaining the same result is that the measurement instrument 
is not precise enough to record small differences. In such cases, one 
ought to estimate uncertainty, which then has the meaning of  a 
maximum absolute uncertainty.

Imagine that we have the same cylinder as in the previous 
example. This time, we only have a scale with a precision of  0.1 g 
and a ruler with 1 mm spaced ticks, which is too crude to obtain 
anything else than μ = 28.9 g, d = 23 mm, and h = 12.5 mm, even 
if  the measurements are repeated many times. Regarding the ruler, 
we can distinguish values with a precision of  0.5 mm, not better 
than that. Hence, when we say d = 23 mm, this actually means that 
d can be anywhere between 22.75 mm and 23.25 mm. This sets the 
maximum absolute uncertainty of  d to ∆d = 0.25 mm, and the same 
applies to ∆h because we use the same ruler. By the same reasoning, 
∆μ = 0.05 g. This is the usual approach to the estimation of  
uncertainties in cases when there is no other option.

Hence, we start with μ = 28.90±0.05 g, d = 23.00±0.25 mm, 
and h = 12.50±0.25 mm. Since d, h, and μ are directly measured 
quantities expressed through their means and maximum absolute 
uncertainties, we use Equation [19] to obtain

  [23].

This gives ρ = ρ̅±Δρ = 5.6±0.2 g/cm3 (R = 3.6 %). Note that 
we have not used any coverage factor, because the maximum 
absolute uncertainties are not related to Gaussian distribution.

It is worthwhile to mention that uncertainties are also often 
estimated not because a measurement instrument is not precise 
enough but because a detailed analysis of  measurement errors is 
less important than keeping the presentation free of  defocusing 
details. In any case, estimation of  uncertainties always depends on 
the nature of  an experiment, but once uncertainties have been 
estimated, the above procedure applies.

Tolerances in technology

One can often see a technical report or a manual where there 
are expressions containing numbers and the ± sign. For instance, 
“the appropriate voltage for this device is 16.1±0.77 V”. Is this just 
another misuse of  TRME, because of  the inconsistent rounding 
of  the mean and uncertainty? The answer is no, because this case 

is not in the domain of  TRME at all. The meaning of  16.1±0.77 V 
is not that the applied voltage is uncertain for 0.77 V, but that the 
device can work properly with voltages between 15.33 V and 16.87 V. 
It would be equivalent to saying “you can use any voltage in the 
range 15.33–16.87 V, and your device will work properly”.

Studies of  statistical populations

A statistical population consists of  many individual entities that 
differ from one another but may share a common trait that can be 
investigated. Investigations of  statistical populations are numerous 
in different fields of  science, such as epidemiological studies in 
medicine, zoological or botanical studies in biology, or geographical 
or geophysical studies. Related analyses of  collected data may include 
descriptive statistics, appropriate statistical tests, comparative tests, 
and sometimes also TRME.

TRME is often misused in studies of  statistical populations, and 
one can find all sorts of  doubtful analyses and presentations, many 
containing confusing uses of  σ, s, and u. In the Tang et al. study (7), 
for example, the mean height is 130.9±6.2 cm (referring to a sample 
of  3,194 eight-year-old boys). The meaning of  this result is unclear. 
If  6.2. refers to u calculated using Equation [13], there are several 
problems with that. First, Equation [13] is applicable to situations 
where a measurement of  a same sample is repeated using the same 
method and not to a set of  measurements of  different samples even 
if  the same method is used. Second, if  6.2. is meant to represent u, 
the above result is not rounded properly, and one would also expect 
to see a comment on the used coverage factor. It may be, however, 
that 6.2 refers to σ or s (it should be s, because the result is related 
to a sample and not the entire population of  eight-years-old boys 
in the area). In that study, the difference between σ and s is irrelevant 
(because n >> 1), but in some cases it might be necessary to specify 
it clearly. Regardless of  whether it is σ or s, the notation 130.9±6.2 
is wrong. Namely, 130.9 cm and 6.2 cm should be written separately, 
since the mean is independent of  σ and s. When presenting σ or s, 
any reasonable number of  digits can be used (there is no rounding), 
but the number corresponding to last digit should not be smaller 
than the maximum absolute error of  a given measurement method.

In fact, TRME is of  limited importance in studies of  statistical 
populations, since it may account for the precision of  an individual 
measurement but does not say much about the studied property of  
the whole sample/population. More information on that can be 
obtained in the analyses that either use a graphical presentation (8) 
or give the values of  𝑥̅, σ (or s), 𝛼3, 𝛼4, ν, and η (9).

The mean and uncertainty of  a set of  independent results

Suppose that one has to analyse a set of  independent results, 
originating from different measurements of  the same quantity, and 
calculate the overall mean and uncertainty from these results. A 
good example of  this situation is a calculation of  the diameter D 
of  a star from the measurements obtained from different 
observatories. The quality of  these measurement may vary from 
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observatory to observatory, since some are in a more favourable 
position than others or use better equipment. Each observatory 
provides the analyst with its result expressed as Di = D̅i±ui.

A relatively common misuse of  TRME is to calculate the mean 
of  D using Equation [6] with 𝑥i → D̅ i, disregard individual 
uncertainties ui, and then calculate u using Equation [13] (or even 
Equation [7] or Equation [9]), again with 𝑥i → D̅i. This is wrong 
for two reasons: 1) D̅i is not an individual measurement of  D in a 
series of  the same measurements, and 2) ui carries information on 
the precision of  each Di. This problem can be solved by using 
Equation [16] to calculate 〈D〉 and Equation [17] to calculate 
u = 〈uD〉, which have the meaning of  the mean and uncertainty 
of  D as calculated from the results from all of  the observatories.

One may argue that the use of  Equations [6] and [13] is not 
always completely wrong, since there is a situation when they give 
approximately the same result as Equations [16] and [17]. Namely, 
if  ui ≈ u0 for every i, Equation [16] becomes 〈𝑥〉≈ ∑i𝑥̅i/n, where 
n is the number of  independent results. However, the similarity is 
only numerical, and the use of  Equation [6] cannot be justified 
conceptually. Under the same conditions, Equation [13] gives 

, which resembles Equation [17] if  we assume u0 ≈ s 
with 𝑥̅ → 〈𝑥〉 and 𝑥i → 𝑥i̅. Again, the similarity is only numerical 
and cannot be justified, especially because Equations [16] and [17] 
require no approximation. In addition, the statistical weight 
wi = 1/ui

2 takes care that more precise results contribute more to 
the final result.

CONCLUSION

The theory of  random measurement errors has been used to 
analyse experimental data for well over a century, being mathematically 
complete and offering solutions for various types of  analyses of  
measurement data. However, sometimes one can encounter partly 
or completely wrong usage of  this theory. In particular, the mean 
and uncertainty of  a measured quantity are often confused with the 
mean and standard deviation in statistics. The mean in statistics is 
the average value of  a random variable in a statistical distribution, 
and in the theory of  random measurement errors, it is the most 
probable value (the best estimate) of  a measured quantity. Standard 
deviation in statistics is the square root of  the mean squared 
deviation of  a random variable from the mean and therefore just 
another statistical parameter used in the description of  a statistical 
distribution. Uncertainty of  the mean – the central quantity of  the 
theory of  random measurement errors – is conceptually different: 
it determines how certain we are that the mean is the best estimate 
of  the true value of  a measured quantity.
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Teorija slučajnih mjernih pogrešaka: koncepti te ispravna i neispravna korištenja

Predstavljamo pregled teorije slučajnih mjernih pogrešaka, fokusirajući se više na ishodišne koncepte nego na striktnu matematičku 
formulaciju. Iako je literatura o toj temi opsežna, često se susreću djelomično ili potpuno pogrešna korištenja spomenute teorije. U mnogo 
su slučajeva pogrešna korištenja povezana s nepotpunim razumijevanjem osnovnih principa. To nas motivira da svoju prezentaciju temeljimo 
na raspravi o sličnostima i razlikama između navedene teorije i statistike, koje se u analizi eksperimentalnih rezultata koriste drugačije. 
Statistički centralni parametri su srednja vrijednost i standardna devijacija, koje su vezane uz danu statističku raspodjelu. Srednja vrijednost 
u teoriji slučajnih mjernih pogrešaka ima drugačije značenje i najbolja je procjena prave vrijednosti mjerene veličine. Drugi važan parametar 
nije standardna devijacija nego nepouzdanost srednje vrijednosti, koja određuje vjerojatnost da prava vrijednost leži u danom intervalu 
oko srednje vrijednosti. Te konceptne razlike rijetko se naglašavaju, što ponekad vodi do dvojbenih ili pogrešnih analiza i prezentacija 
mjernih rezultata. Naša teorijska razmatranja dopunjena su primjerima ispravnih i neispravnih korištenja spomenute teorije.
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