
183

Review DOI: 10.2478/aiht-2025-76-3976

Mathematical models for predicting the toxicity of 
micropollutant mixtures in water

Josipa Papac Zjačić1, Hrvoje Kušić1,2, and Ana Lončarić Božić1

1 University of  Zagreb Faculty of  Chemical Engineering and Technology, Zagreb, Croatia 
2 University North, Koprivnica, Croatia

[Received in March 2025; Similarity Check in March 2025; Accepted in August 2025]

Water pollution caused by micropollutants has been a global issue for decades, prompting the scientific community and industry professionals 
to develop new and effective wastewater treatment methods. Understanding the interactions of  these compounds in real water samples 
is particularly challenging, as they contain complex mixtures that may alter the mechanism of  action and toxic effects of  these compounds 
on aquatic organisms. To address such challenges, computational methods and mathematical models have been developed to complement 
experimental research and predict the toxicity of  micropollutant mixtures in water. This narrative review summarises current literature on 
such mathematical models, including the concentration addition (CA), independent action model (IA), and their combinations to predict 
the toxicity of  mixtures involving pharmaceuticals, pesticides, and perfluorinated compounds. We also discuss computational methods 
like quantitative structure-activity relationship (QSAR) modelling and machine learning (ML). While the CA and IA models provide basic 
frameworks for predicting toxicity in chemical mixtures, their practical application is often limited by the assumption of  additivity and by 
the complexity of  real water mixtures. QSAR and ML approaches, though promising, face challenges such as limited data availability, 
overfitting, and difficult interpretation. Future research should focus on enhancing model robustness, incorporating mechanistic data, and 
developing hybrid approaches that integrate experimental and computational methods to improve the reliability of  toxicity predictions 
for complex environmental mixtures.
KEY WORDS: additive model; aquatic organisms; independent action model; machine learning method; pesticides; PFAS; pharmaceuticals; 
QSAR

The term micropollutant refers to a diverse group of  substances 
with a significant negative impact on the environment and human 
health even at micro-scale concentrations found in the environment. 
These mainly include pharmaceuticals, pesticides, heavy and semi-
metals, personal hygiene products, mycotoxins, cyanotoxins, 
nanoparticles, nano- and microplastics, and perfluorinated 
compounds. Conventional wastewater treatment systems are 
generally ineffective in their complete removal and degradation (1). 
The importance of  researching micropollutant mixtures in the 
environment lies in the interactions between micropollutants in 
mixtures, which can produce enhanced (additive or synergistic) or 
reduced (antagonistic) effect on organisms with respect to individual 
components (2). Understanding these effects is essential for accurate 
risk assessment and the development of  efficient pollution control 
and environmental protection strategies.

The EU Water Framework Directive (WFD) (3) lists 45 
pollutants requiring regular monitoring in the environment, bodies 
of  water in particular, to ensure accurate, comprehensive, and 
current data across the member states. As experimental approaches 
to determining pollutant effects on organisms often rely on 
unrealistically high concentrations often required for environmental 
risk assessment in laboratory settings (4), this approach can lead to 

inaccurate safety thresholds as it ignores natural fluctuations in 
resource availability, like food supply for organisms, which can 
amplify the toxicity of  contaminants at lower, environmentally 
relevant concentrations (5). Because of  this, such data are best 
complemented with mathematical models based on actual 
environmental exposure levels to establish more accurate safety 
thresholds.

BACKGROUND

Micropollutants and their mixtures in the environment

Because of  their toxicity, persistence, and tendency to 
bioaccumulate, micropollutants pose a serious environmental threat, 
as conventional wastewater treatment plants (WWTPs) are often 
inadequate in design and performance to remove them completely 
(6, 7). The removal efficiency starts at 20–50 % in primary treatment, 
30–70 % in secondary, to reach over 90 % in tertiary treatment, but 
tertiary technologies are rare, except for disinfection, and require 
further upgrading (8).
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Environmental concentrations of  pharmaceuticals, for example, 
range from 0.0001–1 µg/L (9, 10). In surface waters, they are usually 
below 0.1 µg/L and in treated effluents below 0.05 µg/L (11). One 
of  the most common pharmaceuticals in the environment is 
diclofenac, to be listed as priority pollutant (12), considering that 
its concentrations in a variety of  environmental samples worldwide 
range from 0.1 to 8 µg/L (13).

However, mixtures of  pharmaceuticals in the environment, such 
as those of  antibiotics, analgesics, hormones, and psychiatric drugs 
can have far greater negative effects on aquatic organisms than 
individual drugs, such as disruption of  the behaviour, growth, and 
reproduction of  aquatic organisms or the development of  bacterial 
resistance (14–17).

Another group of  micropollutants raising concern are pesticides. 
Like pharmaceuticals, pesticide mixtures in water can pose a far 
greater risk to aquatic ecosystems and organisms than their 
components alone by disrupting physiological functions, impairing 
reproduction, altering behaviour, and affecting growth and 
development (18–20). According to Wan et al. (21) such adverse 
effects occur even at field-realistic and environmentally relevant 
levels. The European Commission Drinking Water Directive (22) 
set maximum permissible concentrations of  mixtures of  pesticides 
and their degradation products to 0.1 and 0.5 mg/L, respectively.

The third group of  environmental micropollutants of  concern 
are per- and polyfluoroalkyl substances (PFAS), widely used in 
cleaning agents, dyes, and fire retardants. As they resist degradation 
not only by biological processes but also by oxidation, which is the 
basis of  conventional wastewater treatment systems, they are often 
referred to as ”forever chemicals”, whose environmental 
concentrations range from 1.4 to 34.6  µg/L (23–25). PFAS are 
known to bioaccumulate in organisms and to pose potential health 
risks, including developmental issues, liver damage, immune system 
suppression, and certain cancers (26, 27). These substances have 
been shown to impact fish, birds, and other wildlife, leading to 
potential long-term ecological consequences (28, 29). As they persist 
and biomagnify in the food chain, organisms at higher trophic levels 
are exposed to higher concentrations of  these harmful substances 
(30).

Interactions between micropollutants in mixtures

Interactions between substances in a mixture can lead to a new 
harmful effect or change the effect of  one of  the compounds in 
the mixture. An additive interaction, as described by Folt et al. (31), 
occurs when the total effect of  substances in a mixture is equal to 
the sum of  their individual effects. This is considered the baseline 
or reference point. A synergistic interaction is observed when the 
combined effect is greater than the expected additive effect, 
indicating that the substances amplify each other’s toxicity. In 
contrast, an antagonistic interaction occurs when the total effect is 
lower than expected, suggesting that one compound counteracts or 
reduces the effect of  another.

While this classification is widely used, interpretations and 
applications of  these terms can differ between fields. Côté et al. (32) 
critically examine the conventional definitions and identify their 
limitations, especially in biological and environmental contexts. 
According to their analysis, such labels often oversimplify complex 
and nonlinear interactions. Instead of  replacing the terms entirely, 
they recommend treating additive interactions as a neutral reference, 
synergistic effects as potentially harmful nonlinear interactions, and 
antagonistic effects as potentially beneficial nonlinear interactions 
depending on the context.

Chou (33) further clarifies that interactions in mixtures are not 
always mutual. For example, one compound may enhance the toxicity 
of  another (potentiation) without receiving enhancement itself, or 
one compound may reduce another’s effect (suppression) without 
being affected in return. This nuance highlights the complexity of  
mixture interactions beyond traditional synergy and antagonism.

Environmental literature tends to over-report synergies between 
compounds, often without clear definition or rigorous testing (32). 
In contrast, meta-analyses using stricter methods typically find that 
additive effects are more common and synergies relatively rare. 
Antagonisms are often overlooked, because it is counterintuitive 
that two compounds should result in less damage together.

Current water regulations are focused on individual 
micropollutants, and there is no consistent approach to monitoring 
and assessing the risks posed by their mixtures. The United States 
Environmental Protection Agency (US EPA) has sought to address 
this issue with the 2000 Supplementary Guidance for Conducting 
Health Risk Assessment of  Chemical Mixtures (34), whereas the 
European Food Safety Authority (EFSA) has defined a framework 
for assessing potential combined effects of  pollutant mixtures in 
food (35), which complements current EU regulatory requirements 
for assessing the effects of  individual components. In 2011, the EU 
Scientific Committee on Health and Environmental Risks (36) issued 
an expert group opinion on the applicability of  mathematical 
models, such as additive and quantitative structure-activity 
relationship (QSAR) to predict combined toxicity of  pollutants, 
considering that experimental data on combined toxicities of  
mixtures are very limited. In addition, toxicity tests are often 
expensive, time-consuming and sometimes use small animals, which 
should be avoided where possible. For these reasons, computational 
methods (in silico approach) are a better choice (37).

MODELS PREDICTING THE TOXICITY OF 
MIXTURES

Regulatory authorities often assume additive toxicity for 
chemical mixtures in the absence of  clear evidence to the contrary 
(32, 38). However, this is not the rule, as interactions may lead to 
synergy or antagonism, and it is important to test the same data set 
on different models, using different approaches. In this review, we 
have singled out four models from around 200 review and research 
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articles published between 2013 and 2023. The most common is 
the concentration addition (CA) model, followed by the independent 
action (IA) model, QSAR, and machine learning (ML) model.

Concentration addition model

The CA (or additive) model is used to predict combined toxicity 
of  chemical mixtures based on component toxicity data. It assumes 
additive effects of  each chemical at their respective concentrations 
(32) and similar mode of  action, so that one chemical dilutes another 
and can be substituted with another chemical in a certain amount 
(33). The CA model can be explained with the Loewe additivity 
equation [1], such as the following for a binary mixture of  
compounds A and B (39, 40):

			   [1],

where CA and CB are specific concentrations of  each compound 
A and B resulting in the effect y. ECyA and ECyB denote the 
corresponding effect of  compounds A and B alone that would 
generate the same response y as the mixture. A sum <0.8 or >1.2 
indicates respective synergistic or antagonistic deviation from the 
CA model.

The toxicity behaviour of  binary mixtures obtained with this 
model is most often illustrated by an isobologram (Figure 1), a two-
dimensional plot with a straight line connecting the doses of  each 
substance required to achieve the same effect individually. Substances 
are assumed to have the same or similar mechanism of  action. If  
the combined doses are outside this line, the effect is either 
synergistic or antagonistic.

The CA model has often been applied in regulatory contexts 
and scientific studies. The 2013 EFSA guidance on tiered risk 
assessment, for instance, recommends the CA model as a key 
approach for evaluating pesticide mixtures (41), but its use has 
extended beyond them, encompassing pharmaceutical mixtures and 
industrial chemicals.

Several studies illustrate the advantages and reliability of  the CA 
model in scenarios where chemicals act via the same mechanism. 
Belden et al. (42) applied it to assess the combined toxicity of  
chlorpyrifos and diazinon, organophosphate insecticides that inhibit 
acetylcholinesterase (AChE), in Daphnia magna and found that it 
accurately predicted additive toxicity based on the shared mode of  
action. Similarly, Puckowski et al. (43) used the CA model to evaluate 
the toxicity of  flubendazole and fenbendazole, two anthelmintic 
pharmaceuticals, again observing additive effects in D. magna, 
consistent with CA predictions.

However, the CA model has notable limitations. It assumes a 
common mode of  action of  all mixture components, which does 
not always hold true. When chemicals affect different biological 
pathways, predictions based on simple additivity may be inaccurate. 
Cedergreen (44) has shown that combining chemicals with different 
mechanisms of  action often leads to interactions that the CA model 
cannot predict. Similarly, Kortenkamp et al. (45) argue that the CA 
model overlooks non-additive interactions such as synergism or 
antagonism, which can lead to significant discrepancies in toxicity 
predictions. A case in point is the Schmuck et al. study (46), which, 
contrary to the expected additive effect, demonstrated an 
antagonistic effect of  a tebuconazole (fungicide) and thiacloprid 
(insecticide) mixture in honeybees. Furthermore, although the CA 
model was originally intended for binary mixtures, it has increasingly 
been used for complex, multi-component mixtures, where its 
predictive power declines. Backhaus and Faust (47) caution that with 
more than two components, especially those with dissimilar actions 
or nonlinear interactions, the model often fails to provide accurate 
predictions.

Olwenn et al. (48) further support these concerns. Having 
analysed 1,220 experimental toxicity tests (two-thirds binary, one-
third multi-component), they found that while the CA model fitted 
most mixtures, the occurrence of  synergism or antagonism 
depended on both chemical concentration and mechanism of  action. 
Taenzler et al. (49) investigated 47 pesticide mixtures in honeybee 
and found that additive toxicity was the most frequent outcome, yet 
some mixtures exhibited synergistic or antagonistic deviations, 
indicating that CA provides a good baseline but may overlook 
important interactions. These limitations highlight the need for more 
advanced modelling approaches when dealing with heterogeneous 
or environmentally relevant mixtures.

In conclusion, the CA model is a foundational and widely used 
approach for mixture toxicity prediction, particularly useful when 
components share similar mechanisms of  action. It is a practical, 
conservative method for risk assessment but should be applied with 
caution when mechanisms differ or interactions are likely. In such 
cases, integrating CA with more complex or mechanistic models 
may yield more accurate and environmentally relevant toxicity 
predictions.

Figure 1 Isobologram of  a binary mixture of  components A and B
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Independent action model

In contrast to the CA model, the independent action (IA) 
assumes that components act independently, typically because they 
affect different biological targets or have different modes of  action. 
Because of  this, the IA model can complement the CA model with 
an alternative approach when no shared mechanism is assumed.

The combined effect is calculated as the sum of  the effects of  
individual components in the mixture and their interactions, as 
follows:

		  [2],

where E is the total effect of  the mixture (e.g., mortality or 
inhibition rate), ei is the observed effect of  the i-th compound when 
applied alone at the same concentration as in the mixture, and ∏ is 
the product across all compounds in the mixture. (50). The equation 
usually describes toxic effects of  binary mixtures but can also explain 
multi-component mixtures.

The IA model is the most useful in assessing the toxicity of  
complex mixtures of  pharmaceuticals, pesticides, PFAS, and other 
micropollutants in surface waters, sediments, and wastewater when 
these compounds are not expected to interact directly and when 
they exert their toxic effects via different physiological pathways.

While the CA model is often preferred in chemical risk 
assessment for its simplicity, it can fall short when extrapolating 
from high concentrations to environmentally relevant levels or when 
applied to mixtures with dissimilar mechanisms. In contrast, the IA 
model may offer improved accuracy under such conditions (51). 
Cedergreen et al. (52) tested both the CA and IA models on 98 
mixtures of  pesticides and pharmaceuticals across seven biological 
test systems. Their findings showed that the IA model alone 
accurately predicted approximately 20 % of  the mixtures, CA about 
10 %, and both models jointly predicted additional 20 %. However, 
around 50 % of  mixtures were not adequately described by either 
model or their combination. Most deviations from model predictions 
were antagonistic. Strong synergistic effects, which are of  greatest 
concern in risk assessments, were relatively rare, with the fungicide 
prochloraz identified as a notable exception. The authors therefore 
recommended that, in the absence of  known synergists, CA can 
still offer conservative risk estimates within a reasonable margin of  
error even for mixtures with dissimilar components. Due to its lower 
data requirements, CA is suitable for individual-species assessments, 
whereas IA may be more appropriate for higher-level (e.g., 
multispecies or ecosystem) evaluations.

The IA model does, however, face several challenges. One of  
the main issues is the assumption that chemicals act independently 
without interacting and that their dose-response relationships are 
unaffected by the presence of  other compounds. In practice, this 
assumption is often misplaced, as synergistic or antagonistic 
interactions may occur even when chemicals act on different 
biological targets. Moreover, the IA model requires high-quality, 

detailed dose-response data for each individual compound, which 
are often missing or incomplete, especially for environmental 
contaminants.

Shao et al. (53) provided experimental evidence of  these 
limitations by showing strong antagonistic interactions between 
micropollutants in a ten-compound mixture in zebrafish (Danio 
rerio), highlighting that deviations from IA predictions can occur 
even in mixtures of  seemingly unrelated substances. Similarly, Silva 
et al. (54) applied the IA model to assess the toxicity of  a binary 
mixture of  carbendazim and triclosan in D. magna across multiple 
biological endpoints. While some endpoints confirmed the IA-based 
additive predictions, others, particularly those related to genotoxicity, 
exhibited dose-dependent antagonism or synergism. These findings 
underline the importance of  endpoint-specific evaluation in mixture 
toxicity assessments and demonstrate that the type of  interaction 
may be related to the type of  biological response.

In summary, the IA model is a valuable tool for modelling 
chemical mixtures with dissimilar modes of  action, particularly in 
environmental contexts involving low-dose, multi-compound 
exposure. However, its assumptions of  non-interaction and stable 
individual dose-response curves limit its applicability in many real-
world cases. While IA can offer improved predictions in certain 
contexts, studies such as those by Cedergreen et al. (52), Shao et al. 
(53), and Silva et al. (54) show that it should not be used in isolation. 
Instead, IA should be applied alongside empirical data and other 
models, and chosen based on mixture characteristics and biological 
endpoints rather than theoretical fit alone.

Alternative models based on CA and IA

While both CA and IA models assume additivity under their 
respective frameworks, they often yield comparable predictions, 
particularly when the individual dose-response curves exhibit similar 
slopes. Deviations from model predictions indicate potential 
synergism or antagonism, for which neither CA nor IA can fully 
account. These interactions are often illustrated with isobolograms; 
any significant departure from the central line denoting additivity 
signals that the model assumption is wrong. One way to establish 
a deviation from toxicity predicted by the two models is the mixture 
deviation ratio (MDR). MDR>1 indicates that the mixture is more 
toxic than predicted (synergism), while MDR<1 indicates weaker 
toxicity than predicted (antagonism). Belden (55) found that 34 % 
of  pesticide mixture experiments on honeybees had MDR>2, 
indicating synergy, while MDR>5 was observed only in mixtures 
of  azole fungicides and pyrethroids.

Furthermore, the choice of  an appropriate null model can 
substantially influence how interactions such as synergy and 
antagonism are interpreted. Common frameworks like CA and IA 
are based on additive assumptions, which may not be suitable for 
all biological endpoints. For example, when mortality is the outcome, 
a multiplicative approach is often more appropriate. This is because 
once an organism dies from one compound, it cannot be affected 
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especially in mixtures with tetracycline. The CI model provided 
more accurate toxicity predictions than CA and IA, and risk 
assessment showed that the erythromycin-tetracycline combination 
posed a potential ecological risk.

Another alternative is the generalised concentration addition 
(GCA) model introduced by Howard and Webster (59). It is an 
extension of  the traditional CA model that addresses its limitations. 
Namely, CA assumes that all mixture components have the same 
mode of  action with parallel, full-efficacy dose-response curves, 
which is often not the case in real mixtures. Components can differ 
in maximal effect (e.g., full vs. partial agonists), have non-linear 
dose-response relationships, or act through different mechanisms 
yet produce a common biological outcome. Additionally, some 
chemicals may show no activity but still influence the overall mixture 
effect. The GCA model is calculated as follows:

			   [4],

where ci is the concentration of  component i in the mixture, 
 is the effective concentration of  component i that would 

produce x % of  the mixture’s maximal effect on its own, and n is 
the number of  components in the mixture.

GCA accommodates diverse dose-response relationships and 
does not assume identical modes of  action. It translates each 
component’s effect into an equivalent concentration of  a reference 
compound, enabling additivity on the response scale and more 
realistic mixture modelling. This flexibility makes GCA especially 
useful in toxicology and pharmacology, notably for endocrine 
disruptors and receptor-mediated effects, where traditional CA falls 
short (60). Ultimately, GCA offers a more comprehensive and 
accurate framework for predicting mixture effects in complex real-
world scenarios.

The superiority of  the GCA model over traditional CA and IA 
has been demonstrated by Hadrup et al. (61). Using two chemical 
mixtures affecting hormone synthesis in H295R cells, they showed 
that GCA better predicted the effects on testosterone levels, 
especially in a mixture in which the chemicals had varying and limited 
efficacy. Although none of  the models could predict the effects on 
oestradiol and progesterone due to opposing actions of  the 
chemicals, the study clearly supports GCA as a more flexible and 
accurate tool for mixture toxicity prediction in complex, real-world 
scenarios.

Another complementary model to CA and IA for assessing the 
toxicity of  chemical mixtures at low concentrations is the joint CA/
IA mixture model described by Escher et al. (62). It is particularly 
useful in environmental settings, where many chemicals are present 
at low concentrations, at which dose-response relationships tend to 
be linear. Rather than serving as a true alternative to CA or IA, the 
joint model provides a supportive framework for estimating 
combined effects under conditions where CA and IA predictions 
often overlap, such as in complex mixtures of  weak compounds. 
The formula to calculate the joint CA/IA model is as follows:

again by another, meaning that the overall risk is better estimated 
by multiplying the probabilities of  survival rather than adding the 
effects. Applying an additive model in such cases can distort the 
interpretation of  interactions and lead to an overestimation of  
synergy.

To overcome this limitation, Chou (56) developed the 
combination index (CI) method for a quick and simple assessment 
of  additivity, antagonism, or synergism in mixtures. This approach 
does not require prior knowledge of  mechanisms of  action of  
compounds. It is not a simple mathematical combination of  CA 
and IA but does draw on the principles of  both models using the 
following equation:

			  [3],

where DA and DB are the doses of  substances A and B in a 
mixture, and DA* and DB* are the doses of  substances A and B 
required to achieve the same effect individually. This equation is 
derived from equation [1], since CI and CA are both based on Loewe 
additivity, and allows comparison between the combined and 
individual effects to determine if  the substances interact in a 
synergistic (CI<1), additive (CI=1), or antagonistic (CI>1) manner. 
Unlike models that require assumptions about mechanisms of  
action, CI detects interactions based solely on the observed dose-
response data and quantifies them on a scale from strong synergism 
to strong antagonism (Table 1). Just like the CA or IA isobolograms 
(Figure 1), those obtained with the CI model show synergy if  the 
combined concentrations lie below the line connecting individual 
doses required to achieve the same effect, additivity if  on the line, 
and antagonism above the line.

The method was tested by Ojo et al. (57) on PFAS mixtures in 
human liver cells (HepG2), who found predominantly low to 
medium synergistic effects (see Table 1). González-Pleiter et al. (58) 
used CI to assess the toxicity of  individual and combined antibiotics 
in aquatic organisms and also found that synergism dominated, 

Table 1 Combination index ranges for five antibiotics in mixtures in terms 
of  toxicity to photosynthetic aquatic organisms proposed by Chou (33)

Combination index range Description
<0.1 Very strong synergism

0.10–0.30 Strong synergism

0.30–0.70 Synergism

0.70–0.85 Moderate synergism

0.85–0.90 Slight synergism

0.90–1.10 Nearly additive

1.10–1.20 Slight antagonism

1.20–1.45 Moderate antagonism

1.45–3.30 Antagonism

3.30–10 Strong antagonism

>10 Very strong antagonism
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where E is the combined effect of  the mixture, c
i
 is the 

concentration of  the compound in the mixture, ECi, low the 
concentration of  the compound that produces a low effect (typically 
at the lower end of  the dose-response curve), and n is the number 
of  compounds in the mixture. This approach is especially valuable 
for risk screening and prioritising mixtures for further testing.

Like CA and IA, the joint CA/IA model assumes additivity, but 
it simplifies prediction by summing contributions normalised to 
low-effect concentrations. It does not account for interactions 
between chemicals, making it best suited for complex mixtures 
where the effects are expected to be additive and interactions 
minimal.

Escher et al. (62) applied the joint CA/IA model to predict the 
cytotoxicity of  227 pesticide mixtures, each containing 2–17 
compounds found in river water and agricultural leachates at low 
environmental concentrations. The model effectively predicted 
combined toxic effects when individual chemical effects were small 
and dose-response curves linear. The model is particularly suitable 
for environmental samples that typically require around a 10-fold 
enrichment before the effects become detectable, ensuring that 
predictions remain within the linear low-effect range. However, the 
joint CA/IA model assumes additivity and does not detect 
synergistic or antagonistic interactions.

QSAR

QSAR modelling uses computational and statistical methods to 
predict the biological activity or toxicity of  compounds based on 
their chemical structures without extensive experimental testing 
(63). Traditionally, it focuses on individual compounds, but recent 
advancements allow its application to complex mixtures.

Regardless of  the variant, QSAR models process large sets of  
numerical descriptors – quantitative representations of  chemical 
properties (e.g., octanol-water partition coefficient, acid dissociation 
constant, or molar refraction) – that have been obtained either 
experimentally or computationally through theoretical calculations. 
These descriptors capture key structural features and physicochemical 
properties relevant to toxicity. By analysing these data, QSAR models 
can identify patterns and relationships that help group chemicals 
with similar modes of  action, facilitating mixture toxicity assessments 
and prioritising compounds for further study. QSAR methods range 
in complexity from simple linear models to advanced machine 
learning algorithms, depending on the problem and available data 
(64).

A specific variant of  QSAR is the ecological structure-activity 
relationship (ECOSAR) model, which is tailored for predicting the 
environmental toxicity of  chemicals on aquatic organisms such as 
fish, invertebrates, and algae. Made available to the public by the 
US EPA as a database-driven software tool (65), it complements 

the traditional QSAR models with rapid and efficient toxicity 
estimates using predefined chemical classes and built-in equations 
to estimate toxicity when experimental data are limited or unavailable. 
ECOSAR predicts key toxicity endpoints like the half  maximal 
effective concentration (EC50) to screen large numbers of  chemicals 
for potential environmental hazards. Its strength lies in correlating 
molecular structural features with toxicity, enabling the identification 
of  chemical properties that contribute to environmental risks.

Graumans et al. (66) applied ECOSAR to assess the toxicity of  
pharmaceutical residues and their mixtures in treated wastewater 
and found that the effects were most often additive or synergistic. 
While advanced oxidation treatment reduced overall toxicity, 
transformation products of  fluoxetine, cyclophosphamide, and 
acetaminophen showed increased toxicity. ECOSAR further 
predicted that prolonged thermal plasma oxidation would eventually 
render these transformation products less harmful.

The development of  QSAR models begins with the selection 
of  molecular descriptors and appropriate response variables. Both 
structural molecular descriptors and biological responses to them 
(action) can be calculated or based on conducted experiments from 
literature or databases. The collected data are then divided into two 
sets, that is, a validation set and a model building (training) set. 
Validation relies on statistical tools such as regression analysis to 
test the fit, that is the prediction accuracy of  a developed model 
(67, 68). The higher the validation coefficient the better the fit of  
a model.

QSAR models are widely used to predict the toxicity of  various 
pollutants, ranging from simple aromatic phenols to complex 
substances such as pharmaceuticals, pesticides, and PFAS (69, 70). 
Traditionally, these models assume that chemicals with similar 
molecular structures will exhibit similar toxicological effects, 
enabling compounds to be grouped by their likely mode of  action 
(71). However, recent studies indicate that this assumption does not 
always hold, especially for complex mixtures where interactions 
between components can significantly alter toxicity outcomes 
(72–74).

Chatterjee et al. (72) exemplify the traditional QSAR approach, 
developing models based on 2D structural descriptors to predict 
the toxicity (EC50) of  binary pesticide mixtures to Photobacterium 
phosphoreum and Selenastrum capricornutum. Their model effectively 
predicted mixture toxicity within the tested domain, relying mainly 
on structural similarity without explicitly incorporating interactions 
between mixture components.

Building on this, Quin et al. (73) developed a QSAR model for 
45 binary and multi-component mixtures of  pesticides and 
pharmaceuticals, targeting Vibrio fischeri. Their approach incorporated 
geometric and constitutional descriptors, including molecular 
volume, molecular weight, and specific carbon hybridisation (sp3/
sp2), which proved key in predicting toxicity. Unlike simpler 
approaches, their model was able to capture both synergistic and 
antagonistic effects, showing better performance than traditional 
CA and IA models. This demonstrates how including additional 
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descriptors and mixture-specific information can enhance QSAR 
predictions for complex mixtures beyond what basic structural 
similarity can achieve.

Wang et al. (74) proposed an integrated QSAR framework that 
combines mixture descriptors reflecting molecular interactions with 
established mixture toxicology models. Their extended Generalized 
Concentration Addition (XGCA) model was applied to binary 
mixtures of  antibiotics and metal oxide nanoparticles tested on 
freshwater green algae. Unlike models grouping chemicals solely by 
structural similarity, the XGCA model accounts for combined effects 
based on shared modes of  action and molecular interactions. It 
demonstrated improved accuracy over traditional models such as 
CA, IA, and standard GCA by better matching experimentally 
observed concentration-response curves across diverse mixture 
types. This approach underscores the value of  integrating 
mechanistic and interaction-based descriptors within QSAR models 
to more realistically assess mixture toxicity.

A key challenge for QSAR in predicting mixture toxicity is 
incomplete or unknown information about the structure of  mixtures 
and compound interactions that may not be fully captured by 
standard descriptors. To overcome this challenge, Toolaram et al. 
(75) developed a QSAR model that successfully identified several 
photolysis transformation products likely contributing to the toxicity 
of  pharmaceuticals to V. fischeri. The study showed that focusing 
on key toxicophores such as the aromatic ring was sufficient to 
capture the toxic potential of  these UV-degraded mixtures. This is 
highly relevant because it illustrates that even partly characterised 
transformation products can be included in mixture risk assessments 
using QSAR to achieve more realistic modelling of  environmental 
samples containing unknown or poorly defined compounds.

Zhang et al. (76) developed a QSAR model for predicting PFAS 
concentrations that would not cause toxic effects (predetermined 
no-effect concentration, PNEC) in Pseudokirchneriella subcapitata, 
Chlorella vulgaris, D. magna, and D. rerio. The molecular descriptors 
from the US EPA database included internal molecular energy, 
translational kinetic energy, electron energy, vibrational interatomic 
energy, rotational energy, physicochemical parameters such as logKOW, 
and interactions between the highest occupied molecular orbital 
(HOMO) and lowest unoccupied molecular orbital (LUMO). Their 
model showed that logKOW was the key parameter defining toxicity 
for this group of  compounds.

In conclusion, QSAR modelling is a flexible and powerful 
approach for assessing mixture toxicity, though continued 
advancements are needed to address inherent challenges related to 
mixture complexity and incomplete chemical characterisation.

Machine learning methods

Machine learning (ML) provides powerful tools for processing 
large datasets and identifying complex patterns between chemical 
features and biological responses. In toxicology, ML algorithms are 
increasingly used to develop predictive models that relate molecular 

descriptors to toxicity endpoints, enabling rapid, cost-effective 
screening of  chemicals and their mixtures (77). This is particularly 
valuable in mixture toxicology where the number of  possible 
chemical combinations far exceeds what can feasibly be tested 
experimentally.

ML methods are broadly categorised into supervised and 
unsupervised learning. Supervised methods rely on known input-
output relationships derived from experimental data and are 
commonly used to classify toxicity outcomes or predict continuous 
toxicological responses (78). Unsupervised methods, on the other 
hand, detect hidden patterns in data without requiring predefined 
outcomes, helping to group chemicals by structural or activity 
similarity, which is useful for grouping similar mixtures based on 
their toxicological profiles.

Developing an ML model involves selecting a suitable algorithm 
and defining an appropriate molecular representation. The model 
is trained and validated with existing data, followed by external 
testing to evaluate its predictive robustness and applicability to new 
scenarios (79). In the context of  mixture modelling, an additional 
challenge lies in defining suitable mixture descriptors that represent 
combined chemical properties effectively and account for potential 
interactions among components.

A notable example of  large-scale ML application in toxicology 
is Tox21, a collaboration programme between several US agencies 
(80, 81). Although focused on single chemicals rather than mixtures, 
it demonstrates ML’s ability to handle vast datasets generated 
through high-throughput screening (HTS) of  over 8,500 
compounds, including pharmaceuticals, pesticides, and food 
additives. ML models trained on this dataset have produced millions 
of  toxicity predictions, illustrating the scalability and insight of  ML 
methods in regulatory toxicology and environmental risk assessment. 
The infrastructure and methodology developed through Tox21 
provide a strong foundation for adapting ML to mixture toxicology 
as more complex datasets become available. However, despite the 
promise of  these approaches, not all ML-based predictions have 
been validated experimentally, underscoring the ongoing need for 
external validation to ensure reliability.

Further advancing the application of  ML to mixtures, Chatterjee 
et al. (82) developed and validated a QSAR model using ML 
techniques to predict the toxicity of  198 binary and multi-
component mixtures of  pesticides and pharmaceuticals in Aliivibrio 
fischeri. The model, based on simple 2D molecular descriptors and 
partial least squares (PLS) regression, underwent rigorous cross-
validation and demonstrated strong predictive accuracy. This 
highlights how ML-driven QSAR models can be applied specifically 
to mixtures and capture potential interactions between mixture 
components, which is an advantage over traditional mixture models 
that assume purely additive effects. The authors emphasised that 
careful mixture descriptor calculation and thorough validation are 
essential for ensuring model reliability in complex mixture scenarios.

A different but equally relevant application comes from Feinstein 
et al. (83), who used ML to evaluate the toxicity of  8,163 PFAS. 
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They identified deep learning (DL), a subset of  ML, as the most 
effective approach. Structural data from the US EPA’s PFAS database 
served as input for a transfer learning framework, allowing the DL 
model to leverage patterns learned from well-characterised 
compounds to predict toxicity in lesser-known ones. To address 
uncertainty in predictions, the authors employed techniques such 
as deep ensembles and a SelectiveNet model that abstains from 
low-confidence predictions. This approach illustrates how advanced 
algorithms can improve prediction reliability even in data-scarce 
domains.

In an environmental context, Cipullo et al. (84) applied two ML 
algorithms, neural networks (NN) and random forests (RF), to assess 
temporal changes in bioavailability and toxicity of  complex mixtures 
in contaminated soils. These mixtures included petroleum 
hydrocarbons, heavy metals, and metalloids in soils enriched with 
compost or biochar. The NN model was used to provide continuous 
predictions of  bioavailability over time, while the RF model helped 
identify which components and environmental conditions most 
influenced toxicity. This dual-model approach demonstrates how 
ML can effectively handle the temporal and compositional 
complexity of  environmental mixtures, offering a more nuanced 
understanding of  risk than traditional models. However, the authors 
also noted the need for broader validation across diverse soil types 
and contamination scenarios to improve generalisability.

Despite its potential, several challenges remain in applying ML 
to chemical mixtures. A major limitation is the scarcity of  high-
quality experimental toxicity data for mixtures, which hinders the 
training and validation of  robust ML models. As shown by Feinstein 
et al. (83), even models that perform well may yield overconfident 
predictions in certain regions, making uncertainty quantification a 
critical consideration. Additionally, defining appropriate molecular 
descriptors for mixtures is more complex than for individual 
compounds. Chatterjee et al. (82) highlighted the importance of  
using appropriate mixture descriptor strategies such as additive rules 
to achieve predictive success, though such rules may still fail to 
capture all relevant interaction effects. Cipullo et al. (84) noted that 
models trained on a specific type of  mixture or environmental matrix 
may not perform reliably when applied to different mixtures or 
contexts. Furthermore, while deep learning and neural networks 
offer high predictive power, their interpretability is limited, posing 
challenges for regulatory acceptance and mechanistic understanding.

Even with such challenges, ML holds great promise for 
enhancing chemical mixture assessment. By integrating structural 
information, environmental parameters, and biological responses, 
ML methods can model complex behaviour of  mixtures in ways 
that traditional additive models cannot. Continued investment in 
high-quality mixture datasets, improved uncertainty estimation, and 
transparent model development will be essential to make the most 
of  ML in mixture toxicology and environmental risk assessment.

CONCLUSION

Accurate prediction of  micropollutant mixture toxicity in aquatic 
environments necessitates a multifaceted approach. The CA model 
provides a conservative estimate for mixtures with similar 
mechanisms of  action, while the IA model applies to those with 
distinct mechanisms. However, both models have inherent 
limitations that may lead to underestimation or overestimation of  
mixture toxicity. The CA model assumes that all components 
contribute additively to the overall toxicity, which may not hold true 
if  components interact synergistically or antagonistically. Conversely, 
the IA model assumes independent action of  components, which 
may underestimate toxicity when components interact.

Advanced models such as CI, GCA, and joint CA/IA offer 
more nuanced assessment by accounting for synergistic, antagonistic, 
or additive effects. The CI model, based on Loewe additivity, can 
identify and quantify interactions between components. The GCA 
model extends the CA approach by incorporating varying degrees 
of  interaction. Joint CA/IA models integrate both approaches to 
assess mixtures of  components with both similar and distinct 
mechanisms of  action.

Further advancement was made possible with computational 
tools like QSAR and ECOSAR, which provide rapid, structure-based 
toxicity predictions, particularly valuable when empirical data are 
scarce. QSAR models have been successfully applied to predict the 
toxicity of  pharmaceutical and pesticide mixtures, demonstrating 
their utility in environmental risk assessment. Similarly, ECOSAR 
models have been used to estimate the toxicity of  various chemical 
mixtures, aiding in regulatory decision-making.

By analysing complex datasets and identifying patterns that 
traditional models might overlook, ML techniques further enhance 
predictive accuracy. ML models have successfully been applied to 
predict the toxicity of  complex mixtures such as those of  
pharmaceuticals and PFAS, demonstrating their potential in 
environmental risk assessment.

Despite these advancements, challenges persist, including the 
scarcity of  high-quality experimental data for mixtures, the 
complexity of  defining appropriate mixture descriptors, and the 
need for robust uncertainty quantification. Addressing these issues 
through interdisciplinary collaboration and continued methodological 
development is essential for improving the reliability and applicability 
of  toxicity predictions in complex environmental scenarios.
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Matematički modeli za predviđanje toksičnosti smjesa mikroonečišćivala u vodi

Onečišćenje voda mikroonečišćivalima globalni je problem već desetljećima, zbog čega znanstvena zajednica i struka nastoje razviti nove 
učinkovite metode pročišćavanja otpadnih voda. Osobito je izazovno proučavanje međudjelovanja takvih spojeva u vodenom okolišu s 
obzirom na to da su stvarni uzorci vode zapravo smjese različitih tvari koje mogu promijeniti način njihova djelovanja, pojačavajući ili 
smanjujući toksične učinke na organizme. Zbog toga se, uz eksperimentalna istraživanja, koristimo i računalnim metodama, uključujući 
razvoj matematičkih modela za predviđanje toksičnosti smjesa mikroonečišćivala u vodi. Ovaj narativni pregled sažima dostupnu literaturu 
o takvim matematičkim modelima, uključujući model dodavanja koncentracije (CA), model neovisnog djelovanja (IA) i njihove kombinacije 
za predviđanje toksičnosti smjesa, koje uključuju farmaceutske proizvode, pesticide i perfluorirane spojeve. Također, raspravljamo o 
računalnim metodama poput modeliranja kvantitativnog odnosa strukture i aktivnosti (QSAR) i strojnog učenja (ML). Iako CA i IA modeli 
nude temeljne okvire za predviđanje toksičnosti kemijskih smjesa, njihova praktična primjena često je ograničena pretpostavkama aditivnosti 
i složenosti stvarnih uzoraka vode. QSAR i ML pristupi, koliko god obećavajući, suočavaju se s izazovima kao što su ograničena dostupnost 
podataka, prekomjerna prilagodba i nedostatak objašnjenja. Buduća istraživanja trebala bi se usredotočiti na poboljšanje robusnosti modela, 
uključivanje mehanističkih podataka i razvoj hibridnih pristupa koji integriraju eksperimentalne i računalne metode kako bi se poboljšala 
pouzdanost predviđanja toksičnosti za složene okolišne smjese.

KLJUČNE RIJEČI: aditivni model; farmaceutici; metoda strojnog učenja; model neovisnog djelovanja; pesticidi, PFAS; QSAR; 
vodeni organizmi


