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Radiation processing has become an established and widely used technology in many countries. It is used for decontamination and 
sterilisation of  various products, such as medical devices and accessories, pharmaceutical raw materials, packaging, food components and 
ingredients, with the aim to eliminate unwanted microorganisms. In Croatia, radiation technologies have been used for more than 40 years 
at the irradiation facility of  the Ruđer Bošković Institute. Its Radiation Chemistry and Dosimetry Laboratory operates and maintains a 
60Co panoramic gamma irradiator used for research, development, and industrial services in various aspects of  irradiation technologies. 
This article explains radiation decontamination and sterilisation methods to inform a wider audience of  their advantages and challenges 
in light of  food safety and public health and provides a brief  overview of  related activities in Croatia.
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Radiation processing is the use of  high doses of  ionising 
radiation to alter the biological, physical, or chemical properties of  
irradiated substances. It is not a new field; the idea to use high energy 
X-rays to sterilise medical devices dates back to the 1960s and has 
been implemented since the 1990s. Shortly afterwards, radiation 
processing became very important in health and environmental 
protection, because it can replace different sterilisation, disinfection, 
and disinfestation procedures using toxic and carcinogenic 
chemicals. It also enables sterilisation or decontamination of  
different products and materials that cannot be processed otherwise. 
Nowadays, many products are radiation compatible and many 
manufacturers opt for this method thanks to its speed, cost 
efficiency, penetrative abilities, and product material compatibility 
(1, 2).

The importance of  radiation processing in our day-to-day lives 
is large, and there are many examples of  its successful application, 
such as sterilisation of  syringes, catheters, or implants in hospitals, 
decontamination of  dried herbs, spices, and egg powder, or 
crosslinking wires in motor vehicles (Table 1). There are so many 
applications of  radiation processing that it is impossible to cover 
all aspects in detail.

Therefore, this article will focus on explaining decontamination 
and sterilisation methods and present an overview of  related 
activities in Croatia to complement the available, yet scarce literature 
covering this topic for our country. Our aim is to provide valuable 
information on practices and challenges in light of  food safety and 
public health.

Radiation processing at the Ruđer Bošković Institute

The Radiation Chemistry and Dosimetry Laboratory (RCDL) 
at the Ruđer Bošković Institute (RBI) has a long-standing experience 
in radiation processing and maintaining and operating a 60Co 
panoramic gamma irradiator, designed and built at RBI. RCDL is 
the only facility of  its kind in Croatia and the neighbouring countries 
used for research, development, and industrial services in various 
aspects of  irradiation technologies (11).

The facility has a panoramic batch-type dry storage irradiator 
built in 1962 for an activity of  up to 5.55 TBq (150 kCi). At first, it 
was designed and mainly used for scientific purposes, but since 1983, 
it has also been used for semi-industrial purposes. The facility is 
unique in that it can be used for both radiation processing and 
scientific research (12, 13).

Its current activity (as of  January 2025) is 1.036 TBq (28 kCi), 
and the maximum dose rate is 3.5 Gy/s. The sources of  gamma 
radiation are 60Co radionuclides (half-life 5.27 years, mean photon 
energy 1.25 MeV), which are housed in 24 guide tubes in a cylindrical 
source rack that can be moved between the safe and the working 
position. In the working position, the highest dose rate is achieved 
at a height of  72 cm. By changing the height or increasing the 
distance from the source, the dose rate decreases, allowing for a 
wide range of  possible dose rates (three orders of  magnitude or 
more, if  attenuators are used) and doses (Gy–MGy). This wide dose 
range makes our irradiation facility suitable for a broad scope of  
scientific investigations and applications in radiobiology (dose range 
measured in Gy), radiation chemistry, material sciences, and radiation 
processing (dose range measured in kGy), and testing the radiation 
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hardness of  detectors and electronic components (dose range 
measured in MGy).

The most important parameter in irradiating various products 
is the absorbed dose (i.e., energy deposited by radiation per unit 
mass of  a material; hereinafter the “dose”). How much dose is 
required depends on contamination, the goal of  irradiation, and the 
sensitivity of  materials and unwanted organisms to radiation. This 
is determined with dosimetry and takes several stages: planning, 
validation, processing, and control. At the RCDL facility, dosimetry 
measurements are performed using the ethanol-chlorobenzene 
(ECB) system developed by Igor Dvornik in 1966 that consists of  
liquid chemical dosimeters used both as a reference standard and 
routine dosimeters in radiation processing. It is a simple and reliable 
system for high dose dosimetry (0.1–1000 kGy) accepted as an ISO/
ASTM standard (14) and also recognised and supported by the 
International Atomic Energy Agency (IAEA). The ECB dosimetry 
system has been routinely applied for radiation processing in more 
than 30 countries worldwide (15).

The dosimeters take the form of  ampoules filled with an ECB 
solution that produces hydrochloric acid (HCl) under ionising 
radiation. The obtained HCl concentration correlates linearly to the 
dose absorbed by the solution, allowing easy calculation of  the 
absorbed dose (16–18).

Advantages of  the ECB dosimetry system are several: dosimeters 
are simple to prepare, use, and analyse; they are suitable for X-ray, 
gamma, and electron radiation in a wide dose range independent 
of  the dose rate and are not affected by ambient humidity and 
temperature during irradiation (14, 15).

DECONTAMINATION METHODS

The last two decades have seen a shift in consumer preferences 
towards healthy foods containing herbs and spices. Herbs and spices 

contain compounds with antioxidant, anti-inflammatory, anti-fungal, 
anti-bacterial, anti-atherosclerotic, and even anti-tumour properties 
(19–24). Dried herbs and spices are usually contaminated with a 
variety of  microorganisms, such as bacteria (Staphylococcus aureus, 
Salmonella, Pseudomonas aeruginosa, Clostridium, Enterococcus, Staphylococcus, 
Enterobacteriaceae, Bacilli, Clostridia) and fungi (Candida, Rhodotorula, 
Aspergillus, Rhizopus, and Mucor), which can cause a disease, spoil 
food, or produce toxins. Bacillus cereus stands out due to its spores 
that can survive drying and heating treatments. This bacterium is 
often implicated in foodborne illness outbreaks linked to spices (25, 
26). Another notable spice contaminant is Salmonella spp., as it persists 
even in environments typical of  dried products (27, 28) as well as 
toxin-producing Clostridium perfringens (28, 29). Furthermore, many 
spices are contaminated with yeasts and moulds at levels exceeding 
acceptable limits, often due to improper handling and storage 
practices (30, 31).

Selection of  a proper decontamination method is crucial to 
eliminate or minimise food pathogens and spoilage microorganisms 
and at the same time preserve its sensory and nutritional properties 
(32–35). Steam treatment and irradiation are the most common 
methods applied on industrial scale. High-temperature steam 
treatment (100–200 °C) is particularly effective in decontaminating 
surfaces of  microbes and moulds (36) but can affect food quality 
by removing aromatic volatile compounds, changing flavour and 
aroma, and degrading nutrients (37). Besides, it may not be as 
effective in eliminating pathogens resistant to thermal processing 
(38).

Another decontamination method is fumigation with ethylene 
oxide (EtO). This method is highly effective against bacteria, spores, 
and viruses (32) but also removes bioactive compounds such as 
alkaloids and glycosides and can produce carcinogenic substances 
such as ethylene glycol and 2-chloroethanol, which can persist in 
food for many months after processing. The treated product must 

Table 1 Typical applications of  radiation processing

Product Effect Dose range 
(kGy) Ref.

Healthcare products; medical devices 
(implants syringes, needles, scalpels, blades, 
aspirators, etc.)

Sterilisation 15−30 3

Active ingredients in medicinal and medical 
cosmetic products Sterilisation 25–50 4

Food components and ingredients (spices, 
fillers, herbs, herb teas, etc.) Killing a variety of  microorganisms and insects 1−10 2, 5, 6

Raw materials for pharmaceutical industry 
(starch, plant extracts, etc.)

Enhanced functional properties (solubility, viscosity), 
sterilisation, enhanced extraction of  beneficial compounds 5−30 5, 6

Polymers Crosslinking, grafting 5−1000 7

Bone allografts Sterilisation 25−50 8

Wastewater treatment
Killing pathogenic microorganisms for safe release 
of  the sludge into the environment, degradation of  

organic pollutants
1−10 2, 9

Cultural heritage objects Killing insects, moulds, and fungi 0.5−20 10
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be stored in open containers to allow EtO to outgas. This not only 
increases the cost but, more importantly, increases the risk of  re-
contamination. For these reasons EtO has been banned in the 
European Union.

As a non-thermal alternative, ionising radiation has been gaining 
momentum thanks to its effectiveness in reducing microbial 
contamination while preserving the organoleptic and physicochemical 
properties of  food (39, 40). Research shows that ionising radiation 
can effectively eliminate pathogens and mycotoxins, increase food 
safety, and extend shelf  life (41, 42). Gamma irradiation is 
particularly successful in eliminating fungal contamination in spices 
without compromising their nutritional value (43). Moreover, 
ionising radiation can increase the antioxidant activity of  certain 
foods and contribute to their health benefits (44). Another main 
advantage over steaming and fumigation is that it penetrates food 
deeply and decontaminates it uniformly without chemical changes. 
This property makes it particularly effective for treating loose and 
packaged food products (45). Even though the method is gaining 
momentum, it faces some resistance from EU consumers who prefer 
non-irradiated products (46).

Ionising radiation interacts with microorganisms by forming 
free radicals, electrons, and ions, which cause the degradation of  
nucleic acids. Microorganisms are primarily destroyed by the 
hydroxyl radicals which react with the base and sugar components 
of  DNA, in some cases leading to the breakage of  sugar-phosphate 
bonds and loss of  replication function. The result is cell death. 
Organisms with a more complex genome are more resistant to 
irradiation, which is why viruses are typically treated with lower 
doses of  radiation than bacteria.

Gamma irradiation is generally divided into three categories 
based on specific targets. Low doses (<1 kGy) are used to delay 
insect infestation, inhibit sprouting, and inactivate certain foodborne 
parasites. Moderate doses (1–10 kGy) are applied for microbial 
decontamination by inactivating foodborne pathogens to improve 
the quality and extend the shelf  life of  food. High doses (>10 kGy) 
are used for commercial sterilisation (47, 48).

Food irradiation

Food irradiation is considered a safe and effective technology 
by the World Health Organization (WHO) (49), the Food and 
Agriculture Organization (FAO) (50), and the International Atomic 
Energy Agency (IAEA) (51). The foundation for food irradiation 
was laid with the adoption of  the General Standard for Irradiated 
Foods in 1983, followed by a comprehensive revision in 2003 (52). 
This standard specifies that the intended technological purpose 
should be accomplished with the minimum absorbed dose, while 
the maximum dose should not exceed levels that could jeopardise 
consumer safety or adversely affect the structural integrity, functional 
properties, or sensory characteristics of  the treated food. In general, 
the maximum dose should not exceed 10 kGy, unless this is necessary 
for a legitimate technological purpose. The standard also requires 

irradiated food to be labelled in accordance with the General 
Standard for the Labelling of  Pre-packaged Foods (52).

It is very important to make the producers, suppliers, consumers, 
and general public aware that radiation-processed food does not 
become radioactive through effective evidence-based communication 
about the safety and benefits of  irradiated food to overcome 
persistent misconceptions among the producers, suppliers, and 
general public. It is because of  such misconceptions and regulatory 
challenges that food radiation processing in the EU has a downward 
trend (53). In 2020 and 2021, slightly over five kilotonnes of  food 
was treated with ionising radiation across the EU member states, 
mostly frog legs, poultry, and spices (53). In Croatia, the amount of  
radiation-processed food – namely aromatic herbs, spices, and 
vegetable seasonings – varied between 2020 and 2024 as follows: 
8.5 t in 2020, 21.1 t in 2021, 6.4 t in 2022, 9.1 t in 2023, and 19.2 t 
in 2024 (RCDL facility records).

Since Croatia uses gamma radiation mainly to decontaminate 
dried herbs, teas, and spices, we will give a brief  overview of  its 
effects on bioactive components contained in them, namely phenolic 
compounds, alkaloids, tannins and sulphur-containing compounds.

The effects of  food radiation processing on bioactive 
compounds

Gamma radiation can have both beneficial and detrimental 
effects (6, 54, 55). As mentioned above, the maximum permitted 
dose for dry herbs is 10 kGy, but a lower dose is usually applied to 
preserve colour, taste, and beneficial bioactive substances with 
antioxidant, anti-inflammatory, antimicrobial, anti-cancer, and 
immunomodulatory effects.

Phytochemicals, such as phenolic compounds, flavonoids, and 
essential oils are crucial for the health benefits associated with herbs 
and spices. Research indicates that low to moderate doses of  gamma 
irradiation can enhance the extraction of  these bioactive compounds 
by breaking down cell walls and increasing phytochemical solubility 
(56). Extraction of  these bioactive compounds from plants has 
gained a lot of  interest from food science and biotechnology, as 
radiation processing finds its way into the production of  plant-based 
in pharmaceuticals, functional foods, and healthcare products, giving 
them added value.

However, excessive irradiation can lower total phenolic content 
and antioxidant capacity (57). A case in point is a study by Pereira 
et al. (58), who have shown that low doses of  gamma irradiation 
can enhance the levels of  certain phenolic compounds and 
antioxidant activity in both thyme (Thymus vulgaris) and peppermint 
(Mentha piperita), while doses exceeding 10 kGy can reduce their 
levels significantly. Another example is parsley, whose vitamin C 
content dropped at 2.7 kGy, while total polyphenols increased at 
doses below 2.0 kGy (59). In sage (Salvia officinalis), 2 and 4 kGy 
irradiation resulted lowered antioxidant and polyphenol content by 
30 % and 45 %, respectively (60). In turmeric (Curcuma longa), low 
to moderate doses of  gamma irradiation (up to 10 kGy) enhanced 
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antioxidant activity by increasing the availability of  bioactive 
compounds, curcumin in particular (61).

Black pepper, paprika (Capsicum annuum), cumin, and turmeric 
are mostly imported into the EU and Croatia from India, Morocco, 
Turkey, and China. In these semi-tropical countries, they are subject 
to microbial contamination due to the hot and humid climate and 
poor hygienic conditions during harvesting, storage, and handling 
(62). The most common natural contaminants are mesophylic, 
sporogenic, and asporogenic bacteria, hyphomycetes, and faecal 
coliforms. Most contamination is effectively removed by irradiation 
doses of  5–10 kGy, and its effectiveness is further enhanced in 
combination with modified atmosphere packaging (MAP), as it 
limits oxygen availability (61, 63).

Gamma irradiation can also affect volatile compounds 
responsible for flavour and aroma. The degradation of  these 
compounds can lead to off-flavours or undesirable odours that can 
affect the overall sensory experience. For example, lipid degradation 
products in irradiated rice has been associated with unpleasant 
odours, suggesting that irradiation may alter the sensory profile of  
the food (64). All this research underlines the importance of  
optimising irradiation doses to achieve a balance between microbial 
safety and the preservation of  beneficial phytochemicals in food.

Decontamination and food irradiation in Croatia

In Croatia, the use of  radiation technology for decontamination 
is subject to national and international regulations to ensure safety 
and compliance with the EU standards allowing only the irradiation 
of  dried aromatic herbs, spices, and vegetable seasonings (65, 66). 
Besides these, Croatian legislation allows radiation processing of  
teas, dried fruits and vegetables, gum arabic, and egg powder, and 
the highest permissible dose is 10 kGy.

Our RCDL irradiation facility is one of  the 24 certified facilities 
in Europe that uses ionising radiation to decontaminate food and 
has over 40 years of  experience in decontaminating spices, fillers, 
herbs, herbal teas, and raw materials for the pharmaceutical industry. 
Most often, we irradiate dry herbs such as fennel, sage and nettle 
leaves, camomile blossoms, marigold blossoms, and saffron. In our 
experience, the most common contaminants in these products, are 
Enterobacteriaceae, Escherichia coli, aerobic mesophilic bacteria, sulphite-
reducing bacteria, moulds, and fungi.

STERILISATION METHODS

Gamma sterilisation of  medical devices

Radiation processing has been widely adopted by pharmaceutical 
and medical device industries for sterilisation of  their products and 
banked tissues for over 60 years (3). Additional boost came with 
the regulatory shift away from EtO due to increasing awareness of  
safety risks associated with this gas. Unlike other sterilisation 
methods, this technology allows sterilisation of  the final packaged 
product, which removes aseptic room packaging as a requirement. 
Table 2 lists numerous advantages of  radiation over chemical or 
heat-based sterilisation.

In contrast to decontamination, radiation sterilisation of  a 
product means the complete destruction of  all living organisms 
(mainly microorganisms) in a product by ionising radiation. Medical 
devices and pharmaceuticals can be contaminated with a variety of  
bacteria, moulds, and yeasts. the probability of  survival of  
microorganisms depends on the number and type (species) of  
microorganisms (bioburden) in the product, the lethality of  the 

Table 2 Advantages and disadvantages of  radiation-based sterilisation

Advantages Ref.

Terminal processing Due to the penetration depth of  ionising radiation, products can be processed in their fully 
sealed, final packaging. This limits risk of  contamination following sterilisation 3

Temperature independence
Temperature increases during treatment are minimal. Radiation sterilisation is efficient at both 
ambient and sub-zero temperatures. It can be used to treat thermolabile and frozen materials 

at any temperature and any pressure
3

Chemical independence No volatile or toxic chemicals are needed. The only parameter is radiation dose 3

No residue Radiation leaves no residue on the sterilised product 3

Flexibility Radiation can sterilise gaseous, liquid, or solid materials of  variable density and size, 
homogeneous and heterogeneous alike 3

Sterility assurance level (SAL) Radiation treatment can yield a high SAL of  10-6 or better, ensuring that less than one out of  
a million microorganisms survive the sterilisation 67

Ease of  use Only a single variable, exposure dose/time, must be monitored 3

Disadvantages
Instrumentation Capital costs are high and specialised facilities are needed 2, 68

Product degradation Radiation-based methods are not compatible with all materials and can break down the 
packaging material and/or product 69

Radioactive source Handling and disposal of  radioactive source material requires special, highly regulated care 
and may involve high cost 68
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sterilisation method, and the environment in which sterilisation is 
performed. A way to calculate this probability is the sterility 
assurance level (SAL). SAL is normally expressed as 10−3 or 10-6 to 
denote lower or higher assurance of  sterility, respectively. Higher 
SAL of  10-6 often implies complete sterilisation of  medical devices.

Bioburden, its radioresistance, and SAL serve as the basis to 
calculate a radiation dose limit for sterilisation of  a specific medical 
product. The minimum dose should suffice to achieve the desired 
level of  sterility, and the maximum dose indicates the upper limit 
beyond which a product may lose its integrity and functionality. The 
most common dose used to effectively sterilise medical devices 
without affecting their intended properties is 25 kGy (70).

Gamma sterilisation and microbiology aspects are guided by the 
internationally recognised International Organization for 
Standardization (ISO) standards 11137 (67, 70–72), which detail the 
procedures necessary to meet radiation sterilisation requirements 
and include validation and routine control of  the sterilisation process 
for medical devices. Although their scope is limited to medical 
devices, they often include all healthcare products sterilised by 
gamma radiation when there are no other applicable standards.

Products that are most often treated with gamma irradiation 
include single-use medical devices, implants, hydrogels, laboratory 
supplies, and certain pharmaceuticals. Single-use medical devices 
treated are syringes, catheters, surgical gloves, and wound care 
products. The most common materials used in their production are 
polyethylene, polypropylene, PVC, and thermoplastic elastomers 
(72).

However, not all plastic materials are suitable for or can 
withstand the dose required for effective sterilisation (often in the 
range of  25 kGy to over 50 kGy) (73, 74). In polymers, ionising 
radiation can generate free radicals and chain scission (change in 
molecular weight) or changes in cross-linking which can render 
them brittle, discoloured (due to surface oxidation), malodorous 
(due to released volatile compounds) or non-functional (due to 
reduced tensile strength). The typical dose range for the sterilisation 
of  plastic materials is 15–25 kGy, and 25 kGy is the most common 
sterilisation dose. Once the product is sterilised, it remains sterile 
as long as the outer packaging remains intact.

Radiation sterilisation in Croatia

Figure 1 shows some of  the products we sterilise at our RCDL 
facility. They can be divided in two categories: a) disposable medical 
equipment and accessories that come into direct contact with the 
patient (endoprostheses, scalpels, lancets, hypodermic needles, 
hypodermic syringes, aspirators, catheters, brachytherapy applicators, 
wound dressings, umbilical cord clamps, swabs, gloves, bags, bed 
linen, gowns) and those that do not (laboratory glassware, 
plasticware, supplies, covers, and masks) and b) pharmaceuticals 
(from raw materials and excipients to finished products and 
packaging, including antibiotics in powder, hard gelatine capsules, 
ointments, droppers for eye drops, lactose, cellulose, starch, plant 
extracts, tubes, and applicators).

In addition, RCDL provides research and development support 
and expertise to pharmaceutical companies. Since 2021, RCDL is 
ISO 11137 (70–72) and ISO 13485 (75) certified for sterilisation by 
gamma irradiation. We see a growing customer interest for radiation 
sterilisation of  medical devices and healthcare products thanks to 
the growing recognition of  the method’s efficacy, versatility, and 
regulatory compliance ensuring the safety of  medical devices and 
pharmaceutical products in Croatia. As the demand increases, we 
expect irradiation assume a key position in ensuring the safety and 
efficacy of  medical devices and healthcare products.

CONCLUSIONS

Radiation processing continues to provide superior services to 
a variety of  industries, ranging from medical device manufacturers, 
pharmaceutical, cosmetics, and toiletries industries to food 
producers and processors. The demand for sterilised and 
decontaminated products is expected to continue growing, driven 
by advancements in healthcare and the ongoing need for safe medical 
devices.

Our gamma irradiation facility at RBI continues to play an 
important role as the only facility of  its kind in Croatia providing 
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Figure 1 Examples of  products 
sterilised with gamma radiation at 
RCDL. Left to right: artificial hip, 
catheter, plastic bottles with caps, 
and hard gelatine capsules)
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not only sterilisation and decontamination but also consultancy 
services in the application of  ever evolving radiation technology.

Despite the promising developments, however, challenges by 
the public perception remain. Many consumers and producers 
associate radiation with “nuclear technology”. Addressing these 
fears through transparent communication and education regarding 
the benefits, safety, and efficacy is therefore essential to build trust 
in radiation technologies.
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Radijacijska tehnologija u svrhu javnog zdravlja: hrvatsko iskustvo i doprinos u sigurnosti hrane i sterilizaciji medicinske 
opreme

Radijacijska tehnologija priznata je i uvelike korištena tehnologija u mnogim zemljama. Koristi se za dekontaminaciju i sterilizaciju raznih 
proizvoda, kao što su medicinski uređaji i pribor, farmaceutske sirovine, ambalaža, namirnice i sirovine, kako bi se eliminirali neželjeni 
mikroorganizmi. U Hrvatskoj se radijacijska tehnologija koristi više od 40 godina na Institutu Ruđer Bošković. Laboratorij za radijacijsku 
kemiju i dozimetriju upravlja i održava 60Co panoramski gama ozračivač, koji se koristi za istraživanje, razvoj i industrijske usluge u različitim 
aspektima tehnologija zračenja. U ovom radu objašnjene su metode radijacijske dekontaminacije i sterilizacije kako bi se šira publika 
upoznala s njihovim prednostima i izazovima u svrhu sigurnosti hrane i javnog zdravlja te je dan kratak pregled vezanih aktivnosti u 
Hrvatskoj.

KLJUČNE RIJEČI: dekontaminacija; gama zračenje; prehrambeni proizvodi; sterilizacija


