Letter to the Editor

DOI: 10.2478/aiht-2022-73-3671

Comments on "Wi-Fi technology and human health impact: a brief review of current knowledge" published in the June 2022 issue of Archives

Enrique Arribas¹, Isabel Escobar¹, Antonio Martinez-Plaza², and Raquel Ramirez-Vazquez¹

¹ University of Castilla-La Mancha Faculty of Computer Science Engineering, Applied Physics Department, Albacete, Spain ² University of Castilla-La Mancha School of Industrial Engineering, Mathematics Department, Albacete, Spain

The article by Prlić et al. (1) is very interesting, and we believe that it is an important and necessary publication to keep both the scientific community and the general public informed of the rapid growth of wireless technology. Here we would like to expand on the information presented in that article and comment on some new measurements of electromagnetic wave intensity [other authors prefer to call this magnitude power density (2)] from the Wi-Fi band in schools or universities (indoor/classroom or outside environment) in different countries.

In particular, we would like to complete Table 3 in Prlić's article (1) with measurements carried out in Spain, Jordan, and other countries presented here in Table 1. The last two columns of Table 1 show three significant figures (2), and the last column shows power density values in μ W/m². The highest measured value is 86200 μ W/m² or 0.0862 W/m² in three primary and three secondary schools in the United Kingdom (Table 1). This is 20.6 dB below the maximum allowed reference level of 10 W/m² (24).

A recently published review article (25) collected and analysed all types of studies that investigated health and biological effects of Wi-Fi exposure. The authors concluded that the measured exposure levels were several orders of magnitude below the maximum established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) of 10 W/m² for whole-body exposure (24).

The second important aspect that we want to comment on are non-thermal effects of radiofrequency electromagnetic fields (RF-EMF). There is a paper by Pall (26), in which he comments in a well-documented manner on seven possible EMF effects in animals and humans, with special emphasis on wireless technologies. Pall claims that repeated Wi-Fi studies (26–28) show that Wi-Fi causes oxidative stress, sperm/testicular damage, neuropsychiatric effects including EEG changes, apoptosis, cellular DNA damage, endocrine changes, and calcium overload in the organism, blocking its ionic channels. However, we believe that it is necessary to continue investigations in this direction and try to clarify current doubts, since no measurement has confirmed what Pall claims in his article.

Current controversy over possible damaging effects of 2G, 3G, and 4G wireless technologies is now being extended to the new 5G technology, whose effects on the environment and people have poorly been studied (29). It remains to be seen whether these highfrequency 5G electromagnetic waves together with an already complex combination of lower frequencies will have a negative impact on public health, both from a physical and mental perspective. We witness the first generation of people who are going to have an entire lifespan (from birth to death) immersed in a sea of man-made microwave radiofrequency waves, so it will be years or decades before they know the real health consequences.

Therefore, it makes sense to ask if Wi-Fi can have any negative effects on the health of the people, animals, or plants with which we live. To give a scientific answer to this question, research on this subject is paramount, like the one being done in many European countries. We encourage researchers in this field to carry out measurements of RF-EMF from the Wi-Fi band at schools and universities, compare their data with international regulations (22), and contribute with answers to questions that arise from growing sensitivity among citizens (1, 17, 18, 25, 29).

REFERENCES

- Prlić I, Šiško J, Varnai VM, Pavelić L, Macan J, Kobešćak S, Hajdinjak M, Jurdana M, Cerovac Z, Zauner B, Surić Mihić M, Cvijetić Avdagić S. Wi-Fi technology and human health impact: a brief review of current knowledge. Arh Hig Rada Toksikol 2022;73:94–106. doi: 10.2478/aiht-2022-73-3402
- Ramirez-Vazquez R, Escobar I, Franco T, Arribas E. Physical units to report intensity of electromagnetic wave. Environ Res 2022;204:112341. doi: 10.1016/j.envres.2021.112341
- Khalid M, Mee T, Peyman A, Addison D, Calderon C, Maslanyj M, Mann S. Exposure to radio frequency electromagnetic fields from

 (\mathbf{i})

CC

Corresponding author: Raquel Ramirez-Vazquez, University of Castilla-La Mancha Faculty of Computer Science Engineering, Applied Physics Department, Avda. España s/n, E-02071 Albacete, Spain, E-mail: *raquel.ramirez@uclm.es*

wireless computer networks: duty factors of Wi-Fi devices operating in schools. Prog Biophys Mol Biol 2011;107:412–20. doi: 10.1016/j. pbiomolbio.2011.08.004

- Peyman A, Khalid M, Calderon C, Addison D, Mee T, Maslanyj M, Mann S. Assessment of exposure to electromagnetic fields from wireless computer networks (Wi-Fi) in schools; results of laboratory measurements. Health Phys 2011;100:594–612. doi: 10.1097/ HP.0b013c318200e203
- Joseph W, Frei P, Rooesli M, Thuroczy G, Gajsek P, Trcek T, Bolte J, Vermeeren G, Mohler E, Juhasz P, Finta V, Martens L. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environ Res 2010;110:658–63. doi: 10.1016/j.envres.2010.06.009
- Vermeeren G, Markakis I, Goeminne F, Samaras T, Martens L, Joseph W. Spatial and temporal RF electromagnetic field exposure of children and adults in indoor microenvironments in Belgium and Greece. Prog Biophys Mol Biol 2013;113:254–63. doi: 10.1016/j. pbiomolbio.2013.07.002
- Verloock L, Joseph W, Goeminne F, Martens L, Verlaek M, Constandt K. Assessment of radio frequency exposures in schools, homes, and public places in Belgium. Health Phys 2014;107:503–13. doi: 10.1097/ HP.000000000000149
- Gledhill M. Exposures to radiofrequency fields from WiFi in New Zealand schools. EMF Services. Report 2014/02 [displayed 10 August 2022]. Available at https://www.health.govt.nz/system/files/ documents/publications/wifi-in-nz-schools.pdf
- Karipidis K, Henderson S, Wijayasinghe D, Tjong L, Tinker R. Exposure to radiofrequency electromagnetic fields from Wi-Fi in Australian schools. Radiat Prot Dosimetry 2017;175:432–9. doi: 10.1093/rpd/ncw370
- Roser K, Schoeni A, Struchen B, Zahner M, Eeftens M, Fröhlich J, Röösli M. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents. Environ Int 2017;99:303–14. doi: 10.1016/j.envint.2016.12.008
- Kurnaz C, Engiz BK, Bozkurt MC. Measurement and evaluation of electric field strength levels in primary and secondary schools in a pilot region. Radiat Prot Dosimetry 2018;179:282–90. doi: 10.1093/ rpd/ncx275
- Kurnaz C, Engiz BK, Kose U. An empirical study: The impact of the number of users on electric field strength of wireless communications. Radiat Prot Dosimetry 2018;182:494–501. doi: 10.1093/rpd/ncy107
- Fernandez M, Guerra D, Gil U, Trigo I, Pena I, Arrinda A. Measurements and analysis of temporal and spatial variability of WiFi exposure levels in the 2.4 GHz frequency band. Measurement 2020;149:106970. doi: 10.1016/j.measurement.2019.106970
- Hardell L, Carlberg M, Koppel T, Hedendahl L. High radiofrequency radiation at Stockholm Old Town: An exposimeter study including the Royal Castle, Supreme Court, three major squares and the Swedish Parliament. Mol Clin Oncol 2017;6:462–76. doi: 10.3892/ mco.2017.1180
- Bhatt CR, Redmayne M, Billah B, Abramson MJ, Benke G. Radiofrequency-electromagnetic field exposures in kindergarten children. J Expo Sci Environ Epidemiol 2017;27:497–504. doi: 10.1038/jes.2016.55
- Hamiti E, Ahma L, Kukaj M, Maloku E. Measurements and analysis of personal exposure to RF-EMF inside and outside school buildings:

a case study at a Kosovo School. IEEE Access 2022;10:52866-75. doi: 10.1109/ACCESS.2022.3174223

- Ramirez-Vazquez R, Arabasi S, Al-Taani H, Sbeih S, Gonzalez-Rubio J, Escobar I, Arribas E. Georeferencing of personal exposure to radiofrequency electromagnetic fields from Wi-Fi in a university area. Int J Environ Res Public Health 2020;17:1898. doi: 10.3390/ ijerph17061898
- Ramirez-Vazquez R, Escobar I, Thielens A, Arribas E. Measurements and analysis of personal exposure to radiofrequency electromagnetic fields at outdoor and indoor school buildings: a case study at a Spanish school. IEEE Access 2020;8:195692–702. doi: 10.1109/ ACCESS.2020.3033800
- Hedendahl LK, Carlberg M, Koppel T, Hardell L. Measurements of radiofrequency radiation with a body-borne exposimeter in Swedish schools with Wi-Fi. Front Public Health 2017;5:279. doi: 10.3389/ fpubh.2017.00279
- Hamiti E, Ibrani M, Ahma L, Dragusha S, Halili R. Comparative analysis of personal exposure levels induced by long-term evolution 1800 Re-farming and other RF sources in an urban environment. IET Microw Antennas Propag 2018;12:1185–90. doi: 10.1049/ietmap.2017.0859
- Ibrani M, Hamiti E, Ahma L, Shala B. Assessment of personal radio frequency electromagnetic field exposure in specific indoor workplaces and possible worst-case scenarios. AEU - Int J Electron Commun 2016;70:808–13. doi: 10.1016/j.aeue.2016.03.007
- Gallastegi M, Huss A, Santa-Marina L, Aurrekoetxea JJ, Guxens M, Ellen Birks L, Ibarluzea J, Guerra D, Röösli M, Jiménez-Zabala A. Children's exposure assessment of radiofrequency fields: comparison between spot and personal measurements. Environ Int 2018;118:60– 9. doi: 10.1016/j.envint.2018.05.028
- Lahham A, Sharabati A, ALMasri H. Assessment of public exposure form WLANs in the West Bank-Palestine. Radiat Prot Dosimetry 2017;176:434–8. doi: 10.1093/rpd/ncx028
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys 2020;118:483–524. doi: 10.1097/ HP.0000000000001210
- 25. Dongus S, Jalilian H, Schurmann D, Röösli M. Health effects of WiFi radiation: a review based on systematic quality evaluation. Crit Rev Environ Sci Technol 2022;52:3547-66. doi: 10.1080/10643389.2021.1951549
- Pall ML. Wi-Fi is an important threat to human health. Environ Res 2018;164:405–16. doi: 10.1016/j.envres.2018.01.035
- Arribas E, Ramirez-Vazquez R, Escobar I. Comment on "Wi-Fi is an important threat to human health" Environ Res 2018;167:639. doi: 10.1016/j.envres.2018.08.029
- Foster KR, Moulder JE. Response to Pall, "Wi-Fi is an important threat to human health". Environ Res 2019;168:445–7. doi: 10.1016/j. envres.2018.10.016
- Chiaraviglio L, Lodovisi C, Franci D, Grillo E, Pavoncello S, Aureli T, Blefari-Melazzi N, Alouini M-S. How Much Exposure from 5G Towers on the Exposure over Children, Teenagers and Sensitive Buildings? [displayed 10 August 2022]. Available at https://arxiv.org/ pdf/2201.06944.pdf

Table 1 Results of personal exposure to radiofrequency electromagnetic fields from the Wi-Fi band in schools or universities (indoor/classroom or outside environment)

243

Author	Country	Source	E (V/m)	Power density (µW/m²)
Khalid et al. 2011 (3)	United Kingdom / 3 primary, 3 secondary schools	access points*/ 0.5	5.70 ^b	86200 ^b
Pyman et al. 2011 (4)		Laptops / 0.5	2.90 ^b	22300ь
Joseph et al. 2010 (5)	Hungary / 31 primary school teacher	Wi-Fi devices*	2.00-5.00 ^a	10600-66300ª
Vermeeren et al. 2013 (6)	Belgium (10 school area)	various Wi-Fi devices*#	0.0500^{a} , 0.240^{b}	6.63 ^a , 153 ^b
	Greece (5 school area)		0.0900ª, 0.200 ^b	21.5 ^a , 106 ^b
Verloock et al. 2014 (7)	Belgium / 5 primary and secondary schools	access points, various Wi-Fi clients*#	0.340ª, 2.52 ^b	307ª, 16800 ^b
Gledhill 2014 (8)	New Zealand / 2 schools	access points# / 2 laptops / <0.5	0.971 ^a , 2.746 ^b 0.868 ^a , 3.36 ^b	2500 ^a , 20000 ^b 2000 ^a , 30000 ^b
Karipidis et al. 2017 (9)	Australia / 7 primary 16 secondary schools	access points*# / 1.9	0.388ª, 3.88 ^b	400°, 40000°
Prlić et al. (1)	Croatia /151 primary & secondary schools	access points*# / across whole classroom (grid 1×1 m)	<0.661 ^b	<1160 ^b
Roser et al. 2017 (10)	Switzerland / at school	using WLAN band	0.0351ª	3.27ª
Kurnaz et al. 2018 (11, 12)	Turkey / inside classroom	WLAN band	0.0220ª	1.28^{a}
Fernandez 2020 (13)	Spain / inside university	Wi-Fi band	0.0310ª	2.55ª
Vermeeren et al. 2013 (6)	Belgium / inside schools	Wi-Fi band	0.0500^{a}	6.64ª
Hardell et al. 2017 (14)	Sweden / schools	Wi-Fi band	0.0354ª	3.32ª
Bhatt et al. 2016 (15)	Greece / school area	Wi-Fi band	0.0635ª	10.7ª
Hamiti et al. 2022 (16)	Kosovo / school area	Wi-Fi band	0.0835ª	18.5ª
Vermeeren et al. 2013 (6)	Greece / inside schools	2G Wi-Fi band	0.0898 ª	21.4ª
Ramirez-Vazquez et al. 2020 (17)	Jordanian / total exposure in university area	Wi-Fi band (2G and 5G bands)	0.0931ª	23.0ª
Ramirez-Vazquez et al. 2020 (18)	Spain / inside school buildings	Wi-Fi band (2G and 5G bands)	0.0977ª	25.3ª
Ramirez-Vazquez et al. 2020 (17)	Jordanian / university area	Wi-Fi band (2G and 5G bands)	0.104ª	28.8ª
Hedendahl et al. 2017 (19)	Sweden / in seven schools	Wi-Fi band connection	0.158ª	66.1ª
Ibrani et al. 2016 and Hamiti et al. 2018 (20, 21)	Kosovo / different offices	Wi-Fi band	0.163ª	70.2ª
Bhatt et al. 2016 (15)	Australia / kindergarten area	Wi-Fi band	0.179ª	85.0ª
Verloock et al. 2014 (7)	Belgium / inside schools	Wi-Fi band	0.200ª	106ª
Gallastegi et al. 2018 (22)	Spain / inside classroom	different sources including Wi-Fi band	0.213ª	120ª
Lahham et al. 2017 (23)	Palestine / inside schools	WLAN band	0.005ª	0.0600ª
Lahham et al. 2017 (23)	Palestine / inside universities area)	WLAN band	0.008^{a}	0.180ª
Relevant ICNIRP reference levels [§]			61 V/m	10 W/m^2

*2.4–2.5 GHz; #5.15–5.85 GHz. ^a average value; ^b maximum value; ^{\$} reference levels for general public exposure to time-varying electric and magnetic fields: electric field strength and equivalent plane wave power density refer to the 2–300 GHz frequency range (24)