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The effect of low doses of chlorpyrifos on blood and bone 
marrow cells in Wistar rats
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The aim of  this study was to investigate the genotoxic potential of  low doses of  chlorpyrifos (CPF) on blood and bone marrow cells in 
adult male Wistar rats. CPF was administered by oral gavage at daily doses of  0.010, 0.015, and 0.160 mg/kg of  body weight (bw) for 28 
consecutive days. Positive control (PC) was administered 300 mg/kg bw/day of  ethyl methane sulphonate (EMS) for the final three days 
of  the experiment. Toxic outcomes of  exposure were determined with the in vivo micronucleus (MN) assay and alkaline comet assay. The 
28-day exposure to the 0.015 mg/kg CPF dose, which was three times higher than the current value of  acute reference dose (ARfD), 
reduced body weight gain in rats the most. The in vivo MN assay showed significant differences in number of  reticulocytes per 1000 
erythrocytes between PC and negative control (NC) and between all control groups and the groups exposed to 0.015 and 0.160 mg/kg 
bw/day of  CPF. The number of  micronucleated polychromatic erythrocytes per 2000 erythrocytes was significantly higher in the PC than 
the NC group or group exposed to 0.015 mg/kg bw/day of  CPF. CPF treatment did not significantly increase primary DNA damage in 
bone marrow cells compared to the NC group. However, the damage in bone marrow cells of  CPF-exposed rats was much higher than 
the one recorded in leukocytes, established in the previous research. Both assays proved to be successful for the assessment of  CPF-
induced genome instability in Wistar rats. However, the exact mechanisms of  damage have to be further investigated and confirmed by 
other, more sensitive methods.
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Owing to biomagnification and presence in all environmental 
compartments, pesticides pose a significant threat to plant, animal, 
and human health (1, 2). Their harmful effects are mostly mediated 
by reactive oxygen species (ROS), oxidative tissue damage, or their 
covalent bonds with cellular macromolecules (3, 4). Although the 
number of  studies focused on biological effects of  currently used 
pesticides has increased in the last two decades (5–17), the issue of  
pesticide genotoxicity remains controversial.

Chlorpyrifos (CPF) (O, O-diethyl O-3,5,6-trichloro-2-pyridyl 
phosphorothioate), which is the subject of  our study, is an 
organophosphate (OP) insecticide with known genotoxic and 
teratogenic potential (18–28). Animal studies report that it causes 
hepatic dysfunction (18, 29, 30), immunological abnormalities 
(31–33), embryo- and foetotoxicity (26, 34–36), neurobehavioral 
(37) or neurochemical changes (38), and testicular damage (39–41).

In order to establish the best experimental model for this 
research in line with the EU Directive 2009/128/EC establishing 
a framework for Community action to achieve the sustainable use 
of  pesticides (42), CPF doses we selected were based on toxicological 
reference values, including the acceptable daily intake (ADI), acute 
reference dose (ARfD), and the acceptable operator exposure level 

(AOEL). Previous studies tested CPF at high doses delivered via 
different routes of  exposure over different lengths of  time.

We chose bone marrow model for more detailed evaluation 
since CPF toxicity at this level is almost unknown, especially at low, 
real-life doses. Bone marrow is a tissue where blood cells are 
produced and consists of  a number of  dividing cells, which makes 
it suitable for the assessment of  DNA damage using the comet 
assay. This method is a well-established for sensitive detection of  
genome instability (43, 44). It is widely used in genetic toxicology 
and environmental biomonitoring. It can detect short-lived DNA 
damage, namely single- and double-strand breaks, DNA adducts, 
and DNA–DNA or DNA–protein cross-links (45–48). It can also 
be used to study DNA repair (49, 50) and alkylation damage (51).

Little is known about CPF genotoxicity in the bone marrow. 
One study that investigated DNA damaging effect of  CPF 
formulation on rat bone marrow cells was that of  Yahia and Ali 
(52). While their approach was to combine comet assay with 
chromosome aberration analysis, in our research we applied the 
rodent in vivo micronucleus (MN) assay instead. This method relies 
on the detection of  micronucleated polychromatic erythrocytes 
(MN-PCE) originated from the bone marrow of  rodents. Increased 
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MN frequency in the blood of  exposed animals specifically shows 
damage to the chromosomes or mitotic spindle (53, 54).

The aim of  our study was therefore to expand the knowledge 
of  CPF genotoxicity in the bone marrow with new data by 
investigating toxic outcomes of  exposure to low oral daily doses of  
CPF over 28 consecutive days in adult male Wistar rats. We also 
wanted to gain new data about the occurrence of  MN in rat 
erythrocytes after CPF exposure, which has not been investigated 
so far.

MATERIAL AND METHODS

Ethical approval

The study was approved by the Institutional Animal Care and 
Use Committee and the Croatian Ministry of  Agriculture (Reg. No.: 
525-10/0255-14-2; file class UP/I-322-01/14-01/75 of  12 
September 2014) as well as the Ethics Committee of  the Institute 
for Medical Research and Occupational Health (IMROH) (Reg. No.: 
100-21/14-6; file class: 01-18/14-02-2/6 of  11 June 2014). It was 
carried out in compliance with international standards and national 
legislation for animal welfare protection.

Chemicals and reagents

Chlorpyrifos 99.9 % (CAS No. 2921-88-2) was purchased as 
analytical standard PESTANAL® (Sigma-Aldrich Laborchemikalien 
GmbH; Seelze, Germany). The following chemicals were purchased 
from Sigma-Aldrich (St. Louis, MO, USA): ehylenediaminetetraacetic 
acid (EDTA) disodium salt dehydrate, ethyl methane sulphonate 
(EMS), Tris-HCl, Triton X-100, ethidium bromide, low-melting 
point (LMP) and normal melting point (NMP) agarose, and acridine 
orange. Kemika (Zagreb, Croatia) supplied ethanol, NaOH, KCl, 
and NaCl. Foetal bovine serum (FBS) was purchased from Gibco® 

Life Technologies (Grand Island, NY, USA).

Animals

Thirty male Wistar rats used in this study were bred until adult 
age (three months) at the IMROH Animal Breeding Unit (Zagreb, 
Croatia). We selected only male rats to avoid potential sex-related 
differences in results. Before the experiment, they were randomised 
into six groups of  five rats. The decision to minimise the sample 
was based on the EU Directive 2010/63 (55). Body weights of  the 
selected rats were in the range 286–338 g. Rats were kept at 22 °C 
in stable microenvironmental conditions, with 12 h light/dark cycle. 
They had free access to tap water and food (4RF21 Complete feed 
for mice and rats, Mucedola srl, Settimo Milanese, Italy).

Experimental design

The stock pesticide solution was prepared by reconstitution of  
CPF powder in ethanol and diluted with saline for treatment of  rats. 

The percentage of  ethanol in CPF solutions administered to animals 
did not exceed 0.03 % [this concentration was used as solvent control 
(SC)].

We tested the effects of  CPF at daily doses of  0.010 mg/kg bw 
(10× the current ADI and AOEL values), 0.015 mg/kg bw (3× the 
current value of  ARfD), and 0.160 mg/kg bw [taken from the World 
Health Organization (WHO) (56) and the European Food Safety 
Authority (EFSA) report (57)].

Chlorpyrifos was administered orally with the gastric tube (1 mL 
of  CPF solution per rat a day) for 28 days. Body weights were 
monitored once a week, and CPF doses adjusted accordingly.

Appropriate negative (NC), SC, and positive control (PC) groups 
were studied in parallel. Negative control (NC) received 1 mL of  
PBS instead of  CPF. The PC group was receiving a well-known 
genotoxic agent ethyl methane sulphonate (EMS) (58) at a daily 
dose of  300 mg/kg bw over the final three days of  the experiment.

All animals were inspected daily by a licensed veterinarian at 
IMROH to assess survival, clinical signs of  toxicity, and body weight 
changes. Body weight of  each animal (expressed in grams) was 
measured at the beginning and the end of  the experiment. Body 
weight gain was calculated according to the following formula: 
[(Final weight - Initial weight) × 100] / Initial weight.

The experiment was terminated 24 h after the final gavage. 
Animals were humanely euthanised by exsanguination under 
intraperitoneal anaesthesia with a combination of  xylazine (Xylapan, 
12 mg/kg bw) and ketamine (Narketan, 80 mg/kg bw), both 
produced by Vetoquinol UK Ltd. (Towcester, UK). During 
dissection, the rats were examined by a licensed veterinarian for 
possible internal organ abnormalities. Blood samples for the in vivo 
MN assay were collected from the carotid artery, without 
anticoagulant, and immediately pipetted onto slides pre-coated with 
acridine orange (AO). Bone marrow samples were collected 
simultaneously and processed as described below.

MN in vivo – supravital acridine orange (AO) staining

AO-coated microscope slides were prepared using a water 
solution of  the stain (1 mg/mL, V =10 µL per slide), which was 
carefully applied on the surface of  the slide, as recommended by 
Hayashi et al. (59). A drop of  blood (V=5 µL) was then pipetted 
on the pre-coated slide, covered with a coverslip, and stored in a 
box protecting it from light until the analysis. Slides were analysed 
for the presence of  micronuclei in reticulocytes and erythrocytes 
with a 1000× magnification fluorescence microscope (Leitz 
Orthoplan, Oberkochen, Germany) equipped with a blue excitation 
filter of  502–525 nm.

Reticulocytes, i.e. young RNA-containing erythrocytes (or 
polychromatic erythrocytes, PCE), emitted orange-red fluorescence. 
Cells with a few red fluorescent dots were not regarded as 
reticulocytes. Mature erythrocytes (or normochromatic erythrocytes, 
NCE) had green colour. Round structures which emitted a bright 
yellow-green fluorescence were recorded as micronuclei (MN).
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Microscopic analysis included MN counts per 2000 polychromatic 
erythrocytes (PCE), reticulocyte (or PCE) count per 1000 NCE, 
and MN frequency in 4000 randomly selected reticulocytes per rat 
(two independent evaluations on two replicate preparations were 
made).

Bone marrow dissection and isolation of  bone marrow cells

Both femurs were taken out by dissection, cleaned to remove 
muscles and other tissues. The epiphyses were cut off  and the bone 
marrow gently flushed with 2 mL of  foetal bovine serum (FBS) and 
aspirated with a syringe, and then centrifuged at 390 g for 10 min). 
The obtained pellet was washed with phosphate buffered saline 
(Ca2+ and Mg2+ free PBS) to remove FBS. Cells were resuspended 
in PBS and used to prepare slides for the alkaline comet assay.

Alkaline comet assay

Microscope slides (Vitrognost Plus Ultra, Biognost, Zagreb, 
Croatia) pre-coated with 1 % NMP agarose were prepared earlier 
and stored in a tightly closed plastic box until use. Shortly after 
collection, bone marrow samples were further processed according 
to the standard comet assay protocol (60) with some adjustments 
as reported elsewhere (61). For each experimental group, two 
replicate preparations were made. The first layer of  microgel 
consisted of  0.6 % NMP agarose. To prepare the second layer, bone 
marrow cell suspension (V=20 µL per slide) was mixed with 0.5 % 
LMP agarose (V=100 µL per slide). The top microgel layer consisted 
of  0.5 % LMP agarose. Preparations were transferred into a cold 
freshly prepared lysis buffer (2.5 mol/L NaCl, 100 mmol/L EDTA, 
10 mmol/L Tris, 10 % DMSO, 1 % Triton X-100, pH 10, 4 °C). 
Lysis lasted for 1 h at +4 °C, and was followed by denaturation in 
cold alkaline buffer (pH>13), composed of  300 mmol/L NaOH 
and 1 mmol/L EDTA. After 20 min of  denaturation, the 
preparations were placed in an electrophoresis unit (Horizon 11.14, 
Whatman, Florham Park, NJ, USA) filled with the same buffer. The 
electrophoresis was run for 20 min at +4 °C, and 0.86 V/cm (61). 
Thereafter the microgels were neutralised in 0.4 mol/L Tris-HCl 
(pH 7.5), rinsed with re-distilled water, dehydrated in 70 % and 96 % 
ethanol for 10 min each, and allowed to dry at room temperature.

The slides were stained with 20 µg/mL ethidium bromide 
immediately before analysis under a fluorescence microscope 
(Olympus BX-51, Olympus, Tokyo, Japan) with a charge coupled 
device (CCD) camera. Comets were captured at 200× magnification.

Slides were analysed with the Comet Assay IV™ image analysis 
system (Instem-Perceptive Instruments Ltd., Suffolk, Halstead, UK). 
One hundred and fifty randomly selected comets per slide were 
scored (representing a total of  300 comets per animal or 1500 comets 
per experimental group). Microgel areas near to slide edges or around 
entrapped air bubbles were excluded from the scoring (62). Since 
the nucleoids with no or small head and long diffuse tails may 
indicate cytotoxicity-related DNA damage (63, 64), we recorded 
only those nucleoids which had <80 % DNA in the tail region. We 

used tail intensity (% DNA in comet tail) as a descriptor of  the 
DNA damage.

Statistical analysis

For statistical analysis we used the STATISTICA software (Data 
Science Workbench, version 14; License No. 14.0.0.15; TIBCO 
Software Inc., 2020; Palo Alto, CA, USA).

The homogeneity of  variances of  in vivo MN assay data was 
tested with Levene’s test at a significance level of  5 %. If  variances 
of  the data were homogenous, we used one-way ANOVA. The 
means were further compared using post hoc Tukey’s HSD test. If  
variances were not homogenous even after log-normalisation, we 
used the non-parametric Mann-Whitney U test.

Comet assay results were evaluated with one-way ANOVA, after 
we tested the normality of  distribution with the Shapiro-Wilk test. 
For post hoc analysis, we used Tukey’s HSD test.

Differences between groups were considered significant when 
p<0.05.

RESULTS

All animals survived the 28-day treatment with orally applied 
low-doses of  CPF without signs of  internal organ abnormalities. 
Exposure-related changes in body weights are shown in Figure 1. 
Exposure to 0.015 mg/kg bw/day of  CPF lowered body weight 
gain the most. Statistically significant differences in the body weight 
gain were: PC vs NC (p=0.0098), PC vs SC (p=0.0004), SC vs NC 
(p=0.0105), SC vs 0.010 mg/kg bw/day of  CPF (p=0.0183), SC vs 
0.015 mg/kg bw/day of  CPF (p=0.0004), and SC vs 0.160 mg/kg 
bw/day of  CPF (p=0.0373).

The results of  the in vivo MN assay are presented in Figures 2–4. 
Significant differences for the number of  RETs per 1000 
erythrocytes were observed between PC and NC samples and 
between the groups treated with 0.015 and 0.16 mg/kg bw/day of  
CPF (Figure 2). Figure 3 shows the number of  MN-PCE scored in 
2000 PCE per each experimental group. This descriptor is regarded 
as an indicator of  genotoxicity. The highest number of  MN-PCE 
was found in the PC sample (Figure 3) and was significantly higher 
than in the NC and the group treated with 0.015 mg/kg bw/day of  
CPF. As for the number of  MN in 4000 reticulocytes, again, the PC 
group had the highest damage level, significantly higher than all 
other control and CPF-treated groups.

Table 1 shows the results of  the alkaline comet assay in bone 
marrow cells. CPF treatment did not cause statistically significant 
increase in primary DNA damage compared to NC. The PC group 
had the highest level of  primary DNA damage, significantly higher 
compared to all other groups. No other inter-group differences in 
DNA damage were significant.
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Figure 1 Effect of  sub-chronic oral 
28-day exposure to chlorpyrifos 
(CPF) on body weight gain (%, 
mean ± standard deviation) in adult 
male Wistar rats (N=5 per group). 
NC – negative control (NC); PC – 
positive control (ethyl methane 
sulphonate); SC – solvent control 
(0.03 % ethanol). * – significantly 
different from NC; $ – significantly 
different from SC (p<0.05)

Figure 2 Number of  reticulocytes 
(mean ± standard deviation) per 
1000 erythrocytes in adult male 
Wistar rats (N=5 per group) after 
sub-chronic oral 28-day exposure 
to chlorpyrifos. NC – negative 
control (NC); PC – positive control 
(ethyl methane sulphonate); SC – 
solvent control (0.03 % ethanol). 
* – significantly different from NC; 
b – significantly different from 
0.015 mg/kg bw/day of  CPF; c – 
significantly different from 0.015 
mg/kg bw/day of  CPF (p<0.05)
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DISCUSSION

To the best of  our knowledge, there are not many studies with 
CPF in a rat model that could be used for reliable comparison. What 
makes our study unique is the very low level of  the tested doses. 
Most pesticide toxicity studies used significantly higher dose levels, 
which produced much higher genome damage. They also differ 
greatly in exposure routes.

When we planned this research, we chose the oral route because 
it is relevant to humans and could maximise the delivery of  pesticide 
to the target tissue, while gavage was used to allow more precise 
dosing (65). In this preliminary phase of  the study, we selected only 
male rats to avoid potential hormone-related effects in results. 
Furthermore, we conducted the research on the smallest possible 
number of  animals. Both assays we used were previously confirmed 
as sensitive to detect the genome damage produced after exposure 
to various xenobiotics. In their work, Gianotti et al. (66) showed 
that comet assay can detect the short-lived DNA damage. Krishna 
and Hayashi (67) showed that the in vivo micronucleus assay detects 
the structural and numerical chromosomal damage.

Our study demonstrated reduced body weight gain by the CPF 
dose of  0.015 mg/kg bw/day (three times higher than the current 
value of  ARfD). Previous studies reported body weight changes 
with much higher doses of  CPF. Several studies (18, 31, 32, 68, 69) 
found that CPF exposure caused an increase in rat bw compared 
to controls. The observed gain was attributed to an increase in 
adipose tissues. Other researchers (70, 71) showed that rats exposed 

Table 1 Effects of  sub-chronic, oral, 28-day exposure to chlorpyrifos on 
primary DNA damage (tail DNA %) in bone marrow cells of  adult male 
Wistar rats (N=5 per group) assessed with the alkaline comet assay

Experimental group Tail intensity (DNA %)

Negative control
3.00±0.12

0.47
0–27.83

Positive control  
(ethyl methane sulphonate)

16.33±0.32*
15.33

0–47.55

Solvent control  
(0.03 % ethanol)

3.58±0.15
0.46

0–31.96

CPF 0.010 mg/kg bw/day
3.09±0.12

0.48
0–30.68

CPF 0.015 mg/kg bw/day
3.21±0.14

0.42
0–38.85

CPF 0.160 mg/kg bw/day
2.70±0.13

0.31
0–54.96

All measurements were done in duplicate. The results are shown as mean 
value ± standard error of  the mean (first row), median (second row), and 
range (third row). * – significantly different from all other experimental 
groups [one-way ANOVA with Tukey’s HSD post hoc test (F=123.6822; 
p=0.000)]

Figure 3 Number of  micronuclei 
(mean ± standard deviation) in 
2000 polychromatic erythrocytes in 
adult male Wistar rats (N=5 per 
group) after sub-chronic oral 28-
day exposure to chlorpyrifos. NC 
– negative control (NC); PC – 
positive control (ethyl methane 
sulphonate); SC – solvent control 
(0.03 % ethanol). * – significantly 
different from NC; b – significantly 
different from 0.015 mg/kg bw/day 
of  CPF (p<0.05)
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to CPF doses of  7–10 mg/kg per day had fluctuations in body 
weight. The mechanisms behind the effects on body weight gain 
observed in our study remain to be elucidated by further research. 
Even though we cannot explain them presently, such response has 
already been reported with other organophosphate insecticides 
(fenitrothion, diazinon) (72, 73).

As for the frequency of  MN-PCE as an indication of  
chromosome damage (53, 74), the two higher CPF doses tested in 
our study showed significantly higher damage and genotoxic 
potential towards haematopoietic progenitor cells. Ezzi et al. (18) 
reported that CPF induced the formation of  bone marrow 
micronuclei in a dose-dependent manner by clastogenic and 
aneugenic mode of  action. Similar clastogenic mechanism of  action 
of  other OP insecticides was observed in in vivo studies on mice 
(75–77). Furthermore, these studies showed that the PCE to NCE 
ratio is an indicator of  toxicity affecting cell formation in the bone 
marrow. Our observations match well literature findings and provide 
additional evidence of  CPF potential to induce MN as one of  the 
mechanisms behind genotoxicity of  this insecticide in vivo.

Since there are no related comet assay studies on CPF-exposed 
rats, it is not possible to draw a parallel between our findings and 
the existing literature sources or to propose mechanisms behind the 
observed primary DNA damage. Our earlier study (19) showed that 
28-day oral exposure to low doses of  CPF resulted in a significant 
increase in primary DNA damage in rat leukocytes compared to 
control. Mean tail intensities varied between 1.08 % and 2.16 % of  
DNA in the comet’s tail. In bone marrow cells in this study mean 
tail intensities were even higher and varied between 2.70 to 3.21 % 
of  DNA in the comet’s tail, yet they did not differ significantly from 
negative control or any other group. The reason for this may be in 

inherent differences between leukocytes and bone marrow cells. 
They differ in their capacity for DNA repair and also have different 
potential for replacement of  highly injured cells. In addition, higher 
DNA damage in bone marrow cells may be related to higher 
metabolic activity in this cellular matrix, but this assumption has to 
be verified by future studies.

As can be seen in Table 1, the comet assay did not show a clear dose 
response with CPF. Tail intensities in the 0.010 and 0.015 mg/kg bw/day 
CPF groups were both higher than those in the 0.160 mg/kg bw/day 
group. It is possible that the highest CPF dose produced such high 
cell damage that they were destroyed during microgel processing 
for the comet assay and lost from scoring, as has been reported 
elsewhere (64), so the damage level in that sample mostly refers to 
cells with lower damage. In such conditions, less damaged nucleoids 
will be measured, and the obtained values would be lower than the 
real damage. Another explanation could be more efficient DNA 
repair (78).

Yahia and Ali (52) tested much higher doses than those applied 
in our study (the CPF dose applied orally twice a week for 30 days 
was 8 mg/kg bw, which corresponded to 1/20 of  its LD50). They 
found a significant decrease in red blood cells count, haemoglobin, 
haematocrit, mean cell haemoglobin concentration, and red cell 
distribution width. There was a significant decrease in lymphocyte 
and monocyte counts. They observed a significant time-related DNA 
damage. The comet assay predictors they measured (tail length, tail 
moment, and the percentage of  tail DNA) also increased significantly 
compared to control. They also observed polyploidy and various 
types of  chromosomal aberrations in CPF exposed groups (breaks, 
deletion, attenuation, chromosome ring, gap and fragments). Over 
four weeks of  CPF exposure in rats, Ezzi et al. (18) also documented 

Figure 4 Number of  micronuclei 
(mean ± standard deviation) in 
4000 reticulocytes in adult male 
Wistar rats (N=5 per group) 
after sub-chronic oral 28-day 
exposure to chlorpyrifos (CPF). 
NC – negative control (NC); PC 
– positive control (ethyl methane 
sulphonate); SC – solvent control 
(0.03 % ethanol). ↑ – significantly 
different from all experimental 
groups (p<0.05)
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a significant increase in the comet tail length of  blood cells. Similar 
findings were reported Muller et al. (20). Using alkaline comet assay, 
Ojha et al. (79) demonstrated that CPF induced DNA damage in 
the liver, brain, kidney, and spleen of  rats even after administration 
of  a single dose. Results reported by Sandhu et al. (22) indicate that 
shorter (seven- and 14-day) treatments of  rats with 3 and 12 mg/kg 
bw of  CPF produced a dose-related increase in DNA damage in 
lymphocytes, which was more pronounced in male rats. They also 
found a significant increase in the frequency of  binucleated cells 
after treatment with 12 mg/kg bw of  CPF.

CONCLUSIONS

Despite all limitations, we believe that our in vivo findings provide 
new useful information for the safety assessments of  CPF. The MN 
and the alkaline comet assay have shown that 28-day exposure to 
low doses of  CPF can produce genotoxic effects in bone marrow 
and blood cells of  Wistar rats. Although both assays were sufficient 
to evidence CPF-induced genome instability, they cannot reveal the 
exact mechanisms behind the damage, which needs to be further 
investigated and confirmed by other, more sensitive methods such 
as flow cytometry and different enzyme-modified comet assay 
modifications that detect specific DNA lesions.
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Utjecaj niskih doza klorpirifosa na krvne i stanice koštane srži štakora

Istražen je genotoksični potencijal niskih doza klorpirifosa na uzorcima krvi i stanica koštane srži u odraslih mužjaka štakora soja Wistar. 
Pokusnim je životinjama klorpirifos bio 28 dana oralno apliciran pomoću sonde u dnevnim dozama od 0,010 mg/kg t. m., 0,015 mg/kg 
t. m. i 0,160 mg/kg t. m. Kao pozitivna kontrola korišten je etil metan sulfonat (EMS) u dozi od 300 mg/kg t. m. tijekom posljednja tri 
dana pokusa. Toksični ishodi izloženosti klorpirifosu istraženi su primjenom in vivo mikronukleus (MN) testa i alkalnoga komet-testa. 
Utvrdili smo da je 28-dnevna izloženost klorpirifosu u dozi od 0,015 mg/kg t. m./dan, koja je trostruko viša od važeće vrijednosti akutne 
referentne doze, u najvećoj mjeri smanjila prirast tjelesne mase štakora. Rezultati MN-testa upućuju na značajne razlike u broju retikulocita 
na 1000 eritrocita između pozitivne i negativne kontrole te između obiju kontrola i skupina izloženih klorpirifosu u dnevnim dozama 0,015 
i 0,160 mg/kg t. m. Broj polikromatskih eritrocita s mikronukleusima na 2000 eritrocita u pozitivnoj kontroli bio je značajno povećan u 
usporedbi s negativnom kontrolom te s uzorcima krvi štakora izloženih klorpirifosu u dnevnoj dozi od 0,015 mg/kg t. m. Izloženost 
CPF-u nije uzrokovala statistički značajan porast razine primarnih oštećenja DNA u stanicama koštane srži u usporedbi s razinama 
spontanih oštećenja DNA, izmjerenima alkalnim komet-testom u negativnoj kontroli. Međutim, razine oštećenja u stanicama koštane srži 
štakora izloženih klorpirifosu bile su značajno više od onih zabilježenih u leukocitima, koje su poznate iz prethodnih istraživanja. Oba su 
se testa pokazala uspješnima za procjenu nestabilnosti genoma izazvanih klorpirifosom u Wistar štakora. Međutim, točni mehanizmi 
oštećenja moraju se dodatno istražiti i potvrditi drugim osjetljivijim metodama.

KLJUČNE RIJEČI: alkalni komet-test; genotoksičnost; in vivo mikronukleus test; niske doze; promjene tjelesne mase


