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This study aimed to investigate the effect of  150 mg/L sodium fluoride (NaF) on redox status parameters and essential metals [copper 
(Cu), iron (Fe), and zinc (Zn)] in the blood, liver, kidney, brain, and spleen of  Wistar rats and to determine the protective potential of  
selenium (Se) against fluoride (F-) toxicity. Male Wistar rats were randomly distributed in groups of  five (n=5) receiving tap water (control) 
or water with NaF 150 mg/L, NaF 150 mg/L + Se 1.5 mg/L, and Se 1.5 mg/L solutions ad libitum for 28 days. Fluorides caused an 
imbalance in the redox and biometal (Cu, Fe, and Zn) status, leading to high superoxide anion (O2

.-) and malondialdehyde (MDA) levels 
in the blood and brain and a drop in superoxide dismutase (SOD1) activity in the liver and its increase in the brain and kidneys. Se given 
with NaF improved MDA, SOD1, and O2

.- in the blood, brain, and kidneys, while alone it decreased SH group levels in the liver and 
kidney. Biometals both reduced and increased F- toxicity. Further research is needed before Se should be considered as a promising strategy 
for mitigating F- toxicity.
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The main sources of  fluorides (F-) are water and food, but they 
can also be found in various minerals in the Earth’s crust (1–3) and 
the atmosphere due to release from a variety of  industries, including 
pesticide, glass, aluminium, and cement (1, 4–6). Groundwater 
pollution exceeding concentrations of  1.5 mg/L, however, is the 
major source of  overexposure for more than 200 million people 
worldwide (7–11).

Even though F- is beneficial for physiological functions, its 
excess leads to dental and skeletal fluorosis and damage of  various 
tissues, organs, and systems (12–18). Its toxicity mechanisms are 
complex, as they interact with enzymes, induce inflammation, and 
damage cells (19, 20). One of  the most significant mechanisms 
is the induction of  oxidative stress (21, 22). At the cell level 
oxidative stress could lead to chronic inflammation and cause 
various pathological conditions, such as diabetes mellitus, 
neurological disorders, and neoplasms (23, 24). In vitro and animal 
studies show that F- promotes generation of  reactive oxygen 
species (ROS) and directly reduces antioxidant capacity (25–28). 
In addition, it may affect hormonal balance, enzyme and protein 
activity/expression, and have genotoxic and cytotoxic effects in 
various tissues and species (29–32).
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However, little is known about how subacute sodium fluoride 
(NaF) exposure affects the behaviour of  essential bioelements 
such as copper (Cu), zinc (Zn), iron (Fe), and selenium (Se), 
which are important for homeostasis, DNA transcription 
regulation, and enzyme synthesis and activity (33–35). In addition, 
these bioelements can act as antioxidants (36). What we do know 
from animal studies (37–39) is that F- does interact with some 
microelements and their levels in urine, serum, and soft and 
mineralised tissues.

We also know that one of  these bioelements, Se, counters toxic 
effects of  different substances, such as apoptosis, oxidative damage, 
and telomere shortening (40–43). Protective effects of  Se against 
NaF-induced oxidative and DNA damage have been confirmed 
both in vivo and in vitro (44, 45). We too have reported that Se 
mitigated DNA damage in liver and spleen cells after subacute NaF 
treatment of  rats but did not improve liver histology (32).

Having all of  this in mind, we hypothesized that F- might 
cause toxic effects by provoking oxidative stress and perturbations 
in bioelement levels and that Se could mitigate these effects. 
Therefore, the aim of  our study was to fill in gaps in knowledge 
about how subacute F- exposure affects redox status parameters 
and bioelements (Cu, Zn, and Fe) in the blood, liver, spleen, 
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kidneys, and brain of  experimental rats, and to explore the 
potential protective effects of  Se.

MATERIALS AND METHODS

Chemicals

All chemicals were of  analytical grade. Sodium fluoride was 
purchased from Kemika (Zagreb, Croatia), sodium selenite 
(Na2SeO3x5H2O) from Fluka (Buchs, Switzerland), perchloric acid 
(HCIO4) from Fisher Scientific (Waltham, MA, USA), and nitric 
acid (HNO3) and chemicals for redox status and bioelement 
determination from Sigma-Aldrich-Chemie (Steinheim, Germany).

Animals and treatment

The study included 20 male albino Wistar rats, obtained from 
the Military Medical Academy (Belgrade, Serbia). At the time of  the 
experimental treatment, animals were eight weeks old, weighing 
140–190 g. One week before the experiment, the animals were 
acclimatized to controlled conditions: relative humidity 60–70 %, 
temperature 22±2 °C, and 12 h light/12 h dark cycle. They had free 
access to tap water and standard food pellets, obtained from the 
Veterinary Institute Subotica, Serbia.

They were randomly divided into four groups of  five animals. 
Our decision to use only five rats per group and one F- and Se dose 
stemmed from the principles of  3Rs (replacement, reduction, and 
refinement) and animal welfare (46). The first group was control, 
with free access to tap water and food. The other three groups were 
exposed to NaF and/or Se through tap water solutions prepared 
on a daily basis. The fluoride group was exposed to NaF in the 
concentration of  150 mg/L (F group), the selenium group to 
Na2SeO3 in the concentration of  1.5 mg/L (Se group), and the 
combination group to NaF + Na2SeO3 in the concentrations given 
above (F+Se group). We selected this exposure route instead of  
gavage to simulate real-life exposure through drinking water as one 
of  the main sources of  exposure to F- for the general population 
(47, 48). In addition, this route is less invasive for the animals. Our 
choice of  the Se concentration was based on literature data, which 
indicate that 1.5 mg/L is optimal against F- toxicity in rats (49–51). 
To get an approximation of  exposure, we measured water 
consumption for each group every day throughout the experiment, 
and calculated average daily water consumption per group. Based 
on these measurements of  water consumption and body mass, we 
calculated that rats ingested 19.2 mg of  F- per kg of  body weight 
(bw) a day, which is subacute exposure, considering that acute 
toxicity was reported at daily doses between 31 and 102 mg/kg bw. 
Furthermore, our previous research (52, 53) has shown that this 
subacute dose can induce oxidative stress in the serum, liver, spleen, 
and kidney.

Experimental exposure lasted for 28 days, after which the rats 
were euthanised with 300 mg/kg of  ketamine (100 mg/mL) 

combined with 30 mg/kg of  xylazinum (20 mg/mL) administered 
intraperitoneally (ip).

The experiment was approved by the ethics committees of  the 
University of  Belgrade School of  Dental Medicine and Faculty of  
Pharmacy (Belgrade, Serbia; approval Nos.: 36/2 and 323-07-
11822/2018-05) in accordance with the EU Directive 2010/63/EU 
on the Protection of  Animals Used for Scientific Purposes (54).

Body weight gain

Body weight gain (BWG) was calculated at four time points (on 
days 7, 14. 21, and 28 of  the experiment) using the following 
equation:

where cbm is the current body mass on measurement day and 
bbm the baseline body mass of  each animal in each group.

Blood and tissue sample preparation

Blood samples were collected from the euthanised animals into 3 mL 
heparinised syringes by direct cardiac puncture with a 21G needle and 
their aliquots transferred in two heparin tubes. To assess redox status 
parameters, we separated plasma in the first aliquot by centrifugation at 
3000×g for 15 min, stored it in Eppendorf  tubes (2 mL), and frozen in 
liquid nitrogen (-80 °C) until further analyses. The second aliquot of  
whole blood was stored at -20 °C until bioelement analysis.

Liver, spleen, brain, and kidney tissue samples were excised and 
rinsed from blood with cold saline (0.9 % NaCl). Those for redox 
status analysis were immediately frozen to -80 °C in liquid nitrogen, 
and those for bioelement and F- analyses were stored at -20 °C.

Redox status analysis

Homogenisation of  tissue samples
In a glass tube we homogenised liver, spleen, brain, and kidney 

samples (0.2–0.4 g) with 0.1 mol/L phosphate buffer (pH 7.4) in 
the 1:9 weight-to-volume ratio and added the T10 basic Ultra-Turrax 
homogeniser (IKA, Königswinter, Germany). Homogenates were 
centrifuged at 800×g for 10 min and then at 9500×g for 20 min to 
obtain post-mitochondrial supernatant fraction, which was stored 
at -80 °C until further analysis.

Protein concentration determination
Tissue protein concentrations were determined using the method 

described by Bradford (55), which is based on Coomassie Brilliant 
Blue G-250 binding to a protein molecule, and showing absorption 
peak at 465–595 nm. For readings we used a SPECTROstar Nano 
UV/VIS spectrometer (BMG Labtech, Ortenberg, Germany) and 
for standard we used bovine serum albumin.

Superoxide anion (O2
.-) determination

To determine the levels of  O2
.- we followed the method described 

by Auclair (56), in which O2
.- reduces the yellow nitro group of  
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nitroblue tetrazolium (NBT) to mono and diformazan (nitro blue 
formazan), whose absorbance was measured at 550 nm with the 
ILAB 300 plus analyser (Instrumentation Laboratory, Milan, Italy). 
Results are presented as µmol/min/L or µmol/min/g of  protein.

Total oxidative status determination
Total oxidative status (TOS) was quantified with the 

spectrophotometric method described by Erel (57). This method is 
based on the capacity of  total oxidants (such as lipid hydroperoxide 
and hydrogen peroxide) to oxidise the ferrous ion–o dianisidine 
complex to ferric ion. In acidic conditions, ferric ion with xylenol-
orange creates a coloured complex, whose absorbance was measured 
spectrophotometrically at 560 nm with the ILAB 300 plus analyser 
and corresponds with the overall content of  oxidants in the sample. 
Hydrogen peroxide (10–200 µmol/L) was used as a standard, and the 
results are presented as µmol of  H2O2 equivalent per L or g of  protein.

Superoxide dismutase activity determination
Superoxide dismutase (SOD1) activity was determined as 

described by Misra and Fridovich (58). This method is based on the 
enzyme’s potential to inhibit epinephrine auto-oxidation in an 
alkaline solution (pH 10.2) at 25 °C. One unit of  activity (U) 
corresponds to 50 % inhibition of  epinephrine auto-oxidation. 
SOD1 activity was determined spectrophotometrically with the 
ILAB 300 plus analyser by measuring the absorbance of  a red 
product of  adrenaline oxidation at 480 nm and is expressed as U 
per L or per g of  protein.

Sulphhydryl group determination
The levels of  sulphhydryl (SH) groups were determined with a 

method described by Ellman (59), in which 2-nitrobenzoic acid 
(DTNB, 10 mmol/L in 50 mmol/L phosphate buffer, pH 7.0) reacts 
with aliphatic thiols (0.2 mol/L K2HPO4, 2 mmol/L EDTA, pH 9.0) 
to form yellow-coloured p-nitrophenol. SH levels were determined 
spectrophotometrically, by measuring the absorbance of  the formed 
yellow reaction product at 412 nm with the SPECTROstar Nano 
UV/VIS spectrometer, and the results are expressed as mmol/L or 
mmol/g of  protein.

Malondialdehyde determination
The levels of  malondialdehyde (MDA) were measured as 

described by Girotti et al. (60). Briefly, we mixed homogenised 
samples with 0.375 % thiobarbituric acid (TBA), 15 % trichloroacetic 
acid, and 0.25 mol/L HCl and incubated them at 100 °C for 5 min 
to let MDA react with TBA and form a red-coloured complex. After 
cooling on ice, samples were centrifuged at 10,000×g for 10 min 
and complex absorbance measured spectrophotometrically at 
535 nm with the SPECTROstar Nano UV/VIS. The concentration 
of  MDA is expressed as µmol/L or µmol/g of  protein.

Bioelement analysis in blood, liver, spleen, brain and kidneys

Cu, Zn, and Fe levels were determined in 1 mL of  blood and 
about 500 mg of  organ fragments. Glass platters used for blood 

and organs were soaked in 10 % HNO3 and washed with distilled 
water. Samples were weighed on an analytical balance (Radwag, 
Radom, Poland) and placed in Erlenmeyer flasks to which we added 
8 mL of  69 % HNO3 and 2 mL of  71 % HCIO4 for digestion. 
Samples were then placed in a sand bath (Elektron, Trstenik, Serbia) 
at 200 °C to dry by evaporation. Cu, Zn, and Fe were quantified 
with flame atomic absorption spectrometry (FAAS, 240FS AA, 
Agilent Technologies Santa Clara, CA, USA) against an external 
standard, while calibration was performed with the ICM-100 
calibration standard solution (Agilent Technologies) in the following 
increasing concentrations: 0.10 mg/L, 0.20 mg/L, 0.50 mg/L, 
1 mg/L, 5 mg/L, and 10 mg/L. For analytical accuracy we used 
whole blood level 2 (SeronormTM, Sero, Billingstad, Norway) and 
1577c - bovine liver (LGS Standards, Teddington, UK) as standard 
reference materials (SRM), and the obtained recovery ranged from 
88.4 % to 106.2 %. Absorbance was measured for Zn at 213.9 nm, 
for Cu at 324.8 nm, and for Fe at 248.3 nm.

Fluoride determination in the liver, spleen, brain, and kidneys

After euthanasia, rat liver, spleen, brain, and kidney tissue 
samples were kept in a freezer at -20 °C and F- determined as 
described elsewhere in detail (61). Briefly, each diffusion cell 
(Uniplast, Čačak, Serbia) was added 0.5 mL of  1 mol/L NaOH in 
ethanol and placed in the laboratory oven (SAUTER SA, Basel, 
Switzerland) at 55 °C for 2 h for ethanol to evaporate and let a thin 
layer of  NaOH form on the cap due. The diffusion cells were then 
ready to receive tissue samples (200–300 mg), 1.5 mL of  40 % 
AgClO4, and 1.5 mL of  70 % HClO4 to start microdiffusion at 
55 °C for 24 h. Microdiffusion allows F- (released thanks to 70 % 
HClO4) to react with NaOH and form a thin layer of  NaF on the 
cap. This layer was washed with 5 mL of  deionised water, moved 
into a polyethylene dish, and mixed with 5 mL of  TISAB buffer 
solution [57 mL glacial acetic acid, 58 g sodium chloride, 300 mg 
sodium citrate, and water up to 500 mL, pH 5–5.5 (pH meter Iskra 
MA 5735)]. Fluoride concentration (mg/kg) was determined by 
measuring the potential (mV) of  the prepared solution using a 
fluoride ion-selective electrode (type 800, Consort Belgium, Brussels, 
Belgium) and calculating its negative logarithm, as it equals F- 
concentration The electrode was checked against NaF standards in 
the concentrations of  0.01 mg/L and 0.1 mg/L (Merck Millipore, 
Burlington, MA, USA). Another solution with 0.05 mg/L of  NaF 
standard (Merck Millipore) was used for control. To ensure method 
accuracy the electrode was checked against control after the 
measurement of  every 15th sample.

Statistical analysis

Statistics were run on the GraphPad Prism 8 software (GraphPad 
Software, Inc., San Diego, CA, USA). The normality of  distribution 
for variances was determined with the Shapiro-Wilk test. One-way 
ANOVA was used for normal distribution, followed by Fisher’s least 
significant difference (LSD). Data not distributed normally were 
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Liver
NaF exposure did not affect TOS and MDA levels (Figure 3b 

and 3e), but did lower SOD1 activity significantly compared to 
control (p<0.01). In combination with NaF, Se supplementation 
did not restore it to normal (Figure 3c). Se alone significantly lowered 
O2

.- and SH levels compared to control (p<0.05; Figure 3a and 3d).

Spleen
NaF exposure induced no significant changes in any of  the 

redox parameters, which remained similar to control (Figure 4). The 
only significant change was a drop in O2

.- levels (p<0.05) caused by 
Se+NaF treatment alone compared to the F group (Figure 4a).

run with the Kruskal–Wallis test, followed by Dunn’s post-hoc test. 
The level of  significance was set to p<0.05.

RESULTS AND DISCUSSION

Body weight gain and water consumption

Table 1 shows changes in body weight gain by treatment groups 
over the 28 days of  the experiment. Significantly lower BWG was 
observed in the F group compared to control only on day 7 of  
measurement. By day 28, the two groups did not differ significantly, 
which is in line with some earlier reports (62–64). However, BWG 
seems to depend on the NaF dose, as some authors (65) reported 
higher BWG than ours at a lower NaF concentration of  50 mg/L 
NaF over 11 weeks, and others (66) reported lower BWG at NaF 
concentration of  500 mg/L over 60 days. Interestingly, BWG in the 
F+Se group was lower than control and/or the Se group throughout 
the experiment.

Figure 1 shows average water consumption by groups over the 
28 days of  our experiment. It was significantly lower in all three 
exposed groups compared to control. Low water consumption is 
the most prominent in the Se group and may have affected some 
of  the oxidative stress parameters. Our findings confirm some earlier 
reports, in which Se supplementation (2 mg/L) also resulted in lower 
water consumption in rats (67, 68).

Redox status in the tissues

Blood
Overall, NaF treatment did not significantly affect SOD1 activity, 

SH, and TOS (Figure 2b–d), but it did significantly increase blood 
O2

.- and MDA levels compared to control (p<0.01) (Figure 2a and 
2e). In combination with NaF, Se supplementation did not reduce 
elevated O2

.- induced by F- (p<0.05 compared to control and Se 
group) but managed to lower TOS and MDA significantly (p<0.01 
compared to the F group) (Figure 2b and 2e), resulting in values 
similar to control.

Table 1 Mean body weight gain in Wistar rats exposed to fluoride and/or selenium through drinking water for 28 days

Group Parameter Day 7 Day 14 Day 21 Day 28
Control BWG 0.27±0.03 0.68±0.05 1.00±0.08 0.95±0.11

F group
BWG 0.17±0.04*** 0.59±0.04 0.92±0.08 0.90±0.08

% to control -37.11 % -12.27 % -8.61 % -5.16 %

Se group
BWG 0.27±0.04 0.47±0.07*** 0.83±0.08* 1.1±0.12

% to control 0.35 % -30.84 % -17.39 % 14.92 %

F+Se group
BWG 0.19±0.03** ## 0.57±0.11* # 0.82±0.14** 0.88±0.16###

% to control -26.35 % -15.75 % -18.18 % -18.43 %
Mean (±SD) body weight gain by groups of  Wistar rats exposed to fluoride and/or selenium for 28 days. * # p<0.05; ** ## p<0.01; *** ### p<0.001 – significant 
differences from control group are indicated by *, from the Se group by # (one-way ANOVA followed by LSD test). F group – exposed to sodium fluoride 
alone (150 mg/L); Se group – exposed to sodium selenite alone (1.5 mg/L); F+Se group – exposed to the combination of  F and Se at the same 
concentrations

Figure 1 Median (and range) of  water consumption (mL/day) by groups 
of  Wistar rats exposed to fluoride and/or selenium for 28 days. * p<0.05; 
*** p<0.001 – significant differences compared to control (Kruskal-Wallis 
followed by Dunn’s test). F group – exposed to sodium fluoride alone 
(150 mg/L); Se group – exposed to sodium selenite alone (1.5 mg/L); F+Se 
group – exposed to the combination of  F and Se at the same concentrations
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Figure 2 Blood redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2
.- – 

superoxide anion (μmol/min/L); b) TOS – total oxidative status (μmol/L); c) SOD1 – superoxide dismutase activity (U/L); d) SH – total thiol groups 
(mmol/L); e) MDA – malondialdehyde (μmol/L). * # p<0.05; ** aa p<0.01 – significant differences from control group are indicated by *, from the Se 
group by #, from the F group by a (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’s post-hoc test). The line inside 
of  the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
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Figure 3 Liver redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2
.- – 

superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/g protein); d) 
SH – total thiol groups (mmol/g protein); e) MDA – malondialdehyde (μmol/g protein). * p<0.05; ** ## p<0.01 – significant differences from control 
group are indicated by *, from the Se group by # (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’s post-hoc test). 
The line inside of  the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
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Figure 4 Spleen redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2
.- – 

superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/g protein), d) 
SH – total thiol groups (mmol/g protein); e) MDA – malondialdehyde (μmol/g protein). a p<0.05 – significant differences from the F group are indicated 
by a (One-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’s post-hoc test). The line inside of  the box presents the median, 
the box presents interquartile range (25–75 %). End limiters present minima and maxima
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Brain

NaF exposure significantly increased O2
.-, SOD1, and MDA 

compared to control (p<0.05), but TOS did not change significantly 
(Figure 5). In combination with NaF, Se supplementation 
significantly countered NaF effect on O2

.– and SOD1(p<0.05), and 
restored MDA to normal (Figure 5a, 5c, and 5d). Unlike in other 
tissues, Se alone significantly increased TOS compared to control 
(p<0.05) (Figure 5b). Unfortunately, our SH measurements in the 
brain failed, as they kept below the limit of  detection in all groups.

Kidneys
NaF exposure did not significantly affect O2

.-, TOS, and MDA 
levels (Figure 6a, 6b, and 6e) but did increase SOD1 activity 
significantly compared to control (p<0.01). In combination with 
NaF, Se administration significantly reduced NaF effect on SOD1 
but was not able to restore it to control activity (Figure 6c). All 
treatments significantly decreased SH compared to control (Figure 
6d).

Figure 5 Brain redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2
.- – 

superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/g protein); d) 
MDA – malondialdehyde (μmol/g protein). * # a p<0.05; ### p<0.001 – significant differences from control group are indicated by *, from the Se group 
by #, from the F group by a (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed by Dunn’s post-hoc test). The line inside of  the 
box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and maxima
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Table 2 Copper, zinc, and iron levels in blood, liver, spleen, brain, and kidneys of  Wistar rats exposed to fluoride and/or selenium through drinking water for 28 days

Sample Bioelements
Groups

Control F F+Se Se

Blood

Cu (μmol/L) 22.05±4.97 32.51±8.01* 29.21±3.05### 51.03±7.881***

Zn (μmol/L) 60.63 
47.55–71.44

90.67* 
56.84–122.4

84.02# 

51.64–106.0
216.4*** 

181.4–226.9
Fe (mmol/L) 4.89±2.01 5.40±4.47 4.79±2.11### 13.47±0.35***

Liver

Cu (μg/g) 3.78±0.43 3.07±0.18*** 3.22±0.18**## 2.68±0.21***

Zn (μg/g) 29.86 
28.79–31.93

31.75 
30.97–54.93

32.25# 

29.63–37.10
50.28** 

45.43–69.18
Fe (μg/g) 122.9±19.59 121.8±7.69 105.1±11.73*### 71.52±10.29***

Spleen
Cu (μg/g) 1.65±0.41 1.14±0.51 0.54±1.27 0.99±0.00
Zn (μg/g) 34.55±0.35 36.42±1.32 42.95±3.185 46.47±7.39*
Fe (μg/g) 239.5±90.27 250.6±49.15 287.6±26.45 224.6±96.80

Brain

Cu (μg/g) 2.79±1.39 2.21±0.76 2.88±0.31 3.181±0.68

Zn (μg/g) 20.08 
13.12–38.46

12.18 
8.30–17.03

7.28* 
4.62–10.10

1.99** 
0.53–17.20

Fe (μg/g) 48.10±15.35 29.90±7.78* 35.34±9.85 44.00±11.27

Kidneys

Cu (μg/g) 7.57 
5.35–8.69

5.06 
4.16–7.01

4.48# 

3.96–5.54
7.46 

5.37–10.70

Zn (μg/g) 113.4 
74.50–143.9

43.87* 
23.21–66.48

29.59** 
22.90–39.13

31.32** 
23.86–50.85

Fe (μg/g) 81.78 
71.67–101.6

36.48** 
31.99–39.67

44.40 
40.02–51.71

37.58** 
28.45–47.89

Mean (±SD) or median (± range) of  bioelements levels by groups of  Wistar rats exposed to fluoride and/or selenium for 28 days. * # p<0.05; ** ## p<0.01; 
*** ### p<0.001 – significant differences from control group are indicated by *, from the Se group by # (one-way ANOVA followed by Fisher’s LSD and 
Kruskal-Wallis test followed by Dunn’s post-hoc test). F group – exposed to sodium fluoride alone (150 mg/L); Se group – exposed to sodium selenite 
alone (1.5 mg/L); F+Se group – exposed to the combination of  F and Se at the same concentrations

Overview by redox parameters
Significantly increased blood and brain MDA in the F group in 

our study corroborate earlier reports for experimental animals and 
children with chronic fluorosis (69–71). However, unlike some 
reports of  fluoride poisoning resulting in high MDA levels and 
oxidative stress that disturbed kidney and liver function in different 
animal species (72–74), MDA levels in our study remained similar 
to control in these organs.

As for SOD1 activity, NaF exposure lowered it significantly in 
the liver, which confirms the results of  another report with the same 
NaF dose over 120 days (75). This drop in liver SOD1 can be related 
to the drop in liver Cu levels (see below), as Cu is a precursor for 
SOD activation (76). In the brain and kidney, however, SOD1 activity 
was significantly higher than in control, which points to a possible 
compensatory mechanism to suppress excessive O2

.- production 
caused by NaF. Blood SOD1 of  all groups, in turn, did not differ 
significantly from control. Similar was reported for mice chronically 
exposed to NaF (69), but the exposure doses were much lower (10 
and 50 mg/L).

NaF intake also resulted in significantly higher blood and brain 
O2

.- levels in the F group but remained similar to control in the liver, 

kidney, and spleen. That NaF increases O2
.- in the central nervous 

system has been reported in a study with murine microglial cells 
(77).

NaF exposure significantly lowered SH only in the kidney, and 
this is a novel finding, considering that there are few reports of  the 
SH group levels after NaF exposure.

Interestingly, TOS in all tissue samples of  NaF-exposed rats in 
our study did not significantly differ from control (Figures 2–6), 
unlike in some other reports (78, 79). Our findings suggest that 
TOS is not the most precise biomarker for F- toxicity. Perhaps a 
better option would be to measure the oxidative stress index instead, 
which is the ratio between TOS and total antioxidant capacity (TAC). 
Besides, TOS values differ even between various cancer stages, so 
we believe that a higher NaF dose is necessary for TOS to increase 
(80).

Se effects
Se alone did not affect redox parameters in the plasma and 

spleen but did lower SH levels in the kidney and liver.
In combination with NaF, it did not reduce elevated O2

.- in the 
blood but did lower MDA and TOS compared to the F group (Figure 
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Figure 6 Kidney redox parameters in Wistar rats exposed to fluoride 150 mg/L and/or selenium 1.5 mg/L through drinking water for 28 days. a) O2
.- 

– superoxide anion (μmol/min/g protein); b) TOS – total oxidative status (μmol/g protein); c) SOD1 – superoxide dismutase activity (U/ g protein); d) 
SH – total thiol groups (mmol/g protein); e) MDA – malondialdehyde (μmol/g protein). * # p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001 – significant 
differences from control group are indicated by *, from the Se group by # (one-way ANOVA followed by Fisher’s LSD and Kruskal-Wallis test followed 
by Dunn’s post-hoc test). The line inside of  the box presents the median, the box presents interquartile range (25–75 %). End limiters present minima and 
maxima
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Figure 7 Mean (±SD) liver, spleen, brain, and kidney fluoride levels (mg/kg) in Wistar rats exposed to fluoride (150 mg/L) and/or selenium (1.5 mg/L) 
through drinking water for 28 days. a p<0.05; ** p<0.01; **** p<0.0001 – significant differences from control are indicated by *, from the F group by a 
(one-way ANOVA followed by Fisher’s LSD)
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Table 3 Fluoride (mg/kg) distribution across tissues in Wistar rats exposed to fluoride and/or selenium through drinking water for 28 days

Group Liver Spleen Brain Kidneys
Control 0.23±0.04bd 0.98±0.02ad 0.51±0.11c 1.43±1.07abc

F 0.27±0.06d 0.35±0.04d 0.38±0.03d 0.77±0.15abc

Se 0.06±0.02bcd 0.99±0.02cd 0.45±0.1abd 0.85±0.32ac

F+Se 0.13±0.05bcd 2.53±0.03acd 0.29±0.06abd 0.48±0.11abc

Mean (± SD) of  fluoride levels by groups of  Wistar rats exposed to fluoride and/or selenium for 28 days. a b c d p<0.05 – significant differences from liver 
are indicated by a, from spleen by b, from brain by c, from kidneys by d (one-way ANOVA followed by Fisher’s LSD). F group – exposed to sodium fluoride 
alone (150 mg/L); Se group – exposed to sodium selenite alone (1.5 mg/L); F+Se group – exposed to the combination of  F and Se at the same 
concentrations

2). Similar was reported by Chouhan et al. (81), who demonstrated 
that co-treatment with Se (at 6.3 µmol/L) significantly lowered blood 
and tissue ROS and MDA levels increased by exposure to NaF 
(50 mg/L) over three weeks. Our finding of  protective effects of  
co-administered Se against NaF-induced rise in brain MDA also 
confirms earlier findings in similar animal studies (82, 83). However, 
unlike some earlier studies (51, 84), we found no beneficial effects 
of  Se in combination with NaF in regard to SOD1 levels in rat liver 
(Figure 3), but it did counter NaF-induced rise in the brain and 
kidney. As for SH, Se alone lowered its levels in the liver and kidney, 
and displayed pro-oxidative features. Previous studies in rats 
reported similar findings with intraperitoneal sodium selenite (85, 
86).

Bioelements in the tissues

Table 2 shows Cu, Zn, and Fe concentrations after subacute 
exposure to NaF alone and in combination with Se. NaF alone 
significantly increased Cu and Zn in the blood but lowered Cu in 
the liver and Zn in the kidney. It also lowered Fe in the brain and 
kidney. No significant changes were observed in the spleen.

Fluoride effects on trace metals are still controversial and have 
not been explored enough. One recent study (70) reported reduced 
serum Cu and Zn and elevated Fe in children with chronic endemic 
fluorosis, which, according to authors might be related to oxidative 
stress. Another epidemiological study in children with endemic 
fluorosis (87), in turn, reported lower serum Zn but higher Cu. We, 
in contrast, found increased blood Cu and Zn levels. Other animal 
study data are also conflicting. In rats exposed to 25 mg/L of  NaF, 
kidney Zn levels were elevated and Cu did not change significantly 
(88). We too found stable kidney levels of  Cu but also a drop in Zn 
levels. In the liver, Cu dropped, while Zn remained similar to control. 
Similar observations for Cu were reported by Kanwar et al. (89) 
after exposure to different NaF concentrations.

As for the Fe content, our findings seem to confirm the 
hypothesis that Zn has a role in Fe metabolism and absorption (90), 
as both Zn and Fe were lower in the brain and kidney tissues.

Se in combination with NaF restored some metal levels to near 
control but also significantly decreased liver Cu and Fe and brain 
and kidney Zn compared to control. Alone, it had varying effects 
on metal levels across the tissues (Table 2). These findings are in 

line with the bimodal action of  Se, both beneficial and adverse, 
reported by other studies (91–93), which earned it the nickname of  
“double-edged sword”.

Fluoride distribution in the tissues

Table 3 compares F- concentrations across the liver, kidney, spleen, 
and brain tissues. Liver had the lowest concentrations across all groups, 
whereas kidneys had the highest in the groups that did not receive Se 
(control and F) and spleen in the groups that did (Se and F+Se). High 
kidney levels are expected, as F- is mainly deposited in the bone, and 
excreted by the kidney (94). On the other hand, the Se+F group had 
lower liver, brain, and kidney F- levels than control (Figure 7), which 
may point to an antagonism between Se and F, except in the spleen, 
in which the F+Se combination resulted in the highest F- levels.

CONCLUSION

Our study has confirmed that exposure to F- can bring imbalance 
to the tissue redox and biometal status. Se supplementation failed 
to counter all adverse pro-oxidative effects of  NaF or to restore 
trace metal balance and showed its dual nature.

One of  the limitations of  our study is the use of  a single dose 
of  NaF and Se for the sake of  the 3R principles. To get a more 
precise evaluation of  F- toxicity mechanisms and Se effects, we need 
a study with three doses of  each. Therefore, before we can 
recommend Se as a promising strategy for mitigating F- toxicity, 
further research is needed to better show additive and/or 
antagonistic interaction between F- and Se.
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Redoks-status i koncentracije biometala u Wistar štakora nakon subakutnog izlaganja fluoridu i zaštitni učinak selena

Cilj ovog istraživanja bio je utvrditi djelovanje 150 mg/L natrijevog fluorida (NaF) na redoks-status i koncentracije esencijalnih elemenata 
[bakar (Cu), željezo (Fe) i cink (Zn)] u krvi, jetri, bubrezima, mozgu i slezeni Wistar štakora te mogući zaštitni učinak selena (Se) od 
toksičnosti prouzročene fluoridom (F-). Mužjaci Wistar štakora nasumično su razvrstani u četiri skupine (n=5), nakon čega su 28 dana 
konzumirali običnu vodu ili vodu s otopinom NaF 150 mg/L, NaF 150 mg/L + Se 1,5 mg/L ili Se 1,5 mg/L. Izloženost fluoridu dovela 
je do poremećaja redoks-parametara i koncentracija istraživanih biometala. Utvrđene su povišene razine superoksid aniona (O2

.-) i 
malondialdehida (MDA) u krvi i mozgu, smanjena aktivnost superoksid dismutaze (SOD1) u jetri te njezin porast u mozgu i bubrezima. 
Nadomjesni Se u kombinaciji s NaF pozitivno je utjecao na razine MDA, SOD1 i O2

.- u krvi, mozgu i bubrezima, a sâm Se smanjio je 
razine SH skupina u jetri i bubrezima. Izloženost fluoridu uzrokovala je sniženje, ali i porast koncentracija biometala. Nužna su dodatna 
istraživanja kako bi se ispitali antioksidacijski učinci Se na toksičnost izazvanu F-.

KLJUČNE RIJEČI: Cu; Fe; MDA; NaF; natrijev fluorid; O2
.-; oksidacijski stres; Se; SOD1; subakutna toksičnost; Zn


