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Counteracting poisoning with chemical warfare nerve agents
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Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition 
of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation 
of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent 
desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt 
action is therefore critical to improve the chances of victim’s survival and recovery. Standard therapy of NA poisoning 
generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. 
Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With 
this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
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Organophosphates (OPs) are ester, amide, or thiol 
derivatives of phosphorous, phosphonic, or phosphinic 
acids. They occur in important biomolecules like DNA and 
RNA, some cofactors and coenzymes, phosphoproteins, 
and phospholipids, but can also be synthesised. The first 
OP compounds were synthesised in the early 19th century 
(1, 2). Since then, OPs were developed on a large scale and 
have been used as industrial catalysts, emulsifiers, oil 
additives, polymer resin modifiers, plasticisers, solvents, 
and flame retardants. The most important benefit of OPs 
was the development and production of pesticides, as they 
were found to have a lethal effect on insects. Although OP 
pesticides are mostly banned now, they account for more 
than three million accidental or deliberate cases of poisoning 
a year worldwide (3, 4).

Shortly before World War II (WWII), OPs were 
developed as chemical warfare nerve agents (NAs) and still 
pose a great threat in terrorist attacks, as recently witnessed 
in Syria, Malaysia, and the UK (5, 6). NAs have fatal effects 
in the acute phase of poisoning and can cause considerable 
long-term complications in survivors due to irreversible 
inhibition of a pivotal enzyme acetylcholinesterase (AChE). 
Exposure to NAs leads to overstimulation of the cholinergic 
pathway and consequently to the desensitising of the 
nicotinic and muscarinic cholinergic receptors, which is 
manifested with severe symptoms of poisoning and can 
even lead to death (7, 8). Current standard treatment with 
atropine and an oxime still leaves much to be desired, as it 
does not warrant recovery. This review looks into options 

for improvement through recent developments in NA 
poisoning treatment and prophylaxis/pretreatment.

NERVE AGENTS

History

The first known AChE inhibitor, tetraetylpyrophosphate 
(TEPP), was discovered by a French chemist Philippe de 
Clermont in 1854 (1). Yet, neither the toxicity nor the mode 
of action of TEPP was known at the time. It was not until 
1932, when Willy Lange synthesised some compounds 
containing the P-F bound, that the toxic effects of exposure 
to the vapours of OP compounds were observed (9). 
Although Lange seemed to be aware of the potential 
pesticidal activity of OP compounds, he never pursued it. 
A German chemist Gerhard Schrader later developed a new 
simple method to synthesise TEPP, which then became the 
first commercial OP insecticide. In 1936, while working 
for a chemical corporation IG Farben in search for new 
potential insecticides, Schrader synthesised (R/S)-ethyl 
N,N-dimethylphosphoramido cyanidate (tabun), for which 
he found to be too toxic for application in agriculture (10). 
IG Farben reported tabun discovery to the German Ministry 
of War, which lead to a chemical weapons programme 
intended to develop highly toxic and volatile NAs for 
military purposes. This is how sarin (GB), soman (GD), 
and cyclosarin (GF) were developed besides tabun (GA) 
between 1936 and 1949 (11). Fortunately, this so-called 
“G” (Germany) series of NAs was never used in WWII.

NAs were also synthesised during the Cold War by both 
the Western and Eastern bloc. The United Kingdom 
synthesised VX, the representative of “V” agents, in homage 
to the victory of the Allied forces in WWII, and the United 
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States developed it further for military purposes (12). The 
Soviet Union generated compounds similar to the V agents, 
such as VR, also known as Russian VX, and a new 
generation of compounds known as “intermediate volatility 
agents” (IVA). One variant of IVA, known as GV, was also 
developed in the United States (13, 14).

The end of the Cold War saw the development of yet 
another class of NAs in the Soviet Union, called Novichok 
agents. In the early 1990s, a Soviet defector Vil Mirzayanov 
exposed a chemical weapons programme known as Foliant, 
and revealed the chemical structures of several Novichok 
series compounds: A-230, A232, A-234, A240 (Novichok-5), 
and A-262 (Novichok-7) (15, 16). Novichok agents were 
developed as binary agents and are more potent than VX, 
the most hazardous among NAs (15). The main advantage 
of binary agents is the reduced risk of accidental dispersion 
and poisoning, since chemical precursors are separated and 
less toxic than the final product (14, 17). The structures of 
the above mentioned NAs are presented in Figure 1.

Although NAs, tabun in particular, were produced and 
stockpiled by the German army in WWII, tabun and sarin 
were first used by the Iraq military against Iranian troops 
and civilians in the Iran-Iraq War of 1983–1988 (11, 18). 
Considering their relatively undemanding synthesis, NAs 
were also used in terrorist attacks, such as the one in 
Matsumoto, Japan in 1994, and six months later in the Tokyo 
subway, when thousands of people were poisoned and 19 
died (11). In 1995, many countries, including the USA, 
signed the Chemical Weapons Convention, agreeing to 
destroy their stockpiled chemical warfare agents, including 
NAs, by 2012. The Convention entered into force in 1997, 
and 193 states have signed it since then (19).

Despite vigorous and worldwide control of chemical 
warfare agent threat by the Organization for Prohibition of 
Chemical Weapons (OPCW), between 2013 and 2017, sarin 
was used in a series of chemical attacks in the Syrian civil 
war in Damascus and the surrounding East Ghouta region, 
Aleppo and the nearby Idlib region, and possibly the Hama 
region (5, 17, 20). VX was used for the assassination of 
Kim Jong Nam in Malaysia in 2017, and Novichoks in an 
attempted assassination of the former Russian spy Sergey 
Skripak and his daughter in Salisbury UK, 2018 (6, 16). 
More recently (August 2020), Novichoks were used on a 
Russian politician A. Navalny, as confirmed by several 
Europian research laboratories and OPCW (21, 22). 
Apparently, the threat posed by NAs is still very real.

Chemistry

The NAs of the G-series are volatile liquids that 
evaporate spontaneously at room temperature, unlike VX, 
which is oily and evaporates very slowly (8, 11, 12). VX is 
therefore more persistent and will contaminate the 
environment longer than the G agents. Moreover, VX is 
lipophilic and will more easily penetrate the skin than the 
hydrophilic G agents, which are mostly inhaled and 
penetrate the lungs (8, 23).

NAs are mainly odourless and colourless but can appear 
darker if they contain impurities. Their toxicity is expressed 
by the median lethal dose (LD50) or median lethal 
concentration and time (LCt50). The first is used for the 
percutaneous route of exposure and the second for exposure 
through inhalation. The most toxic among the G agents are 
cyclosarin (LD50 30 mg/70 kg man) and soman (LD50 
350 mg/70 kg man; LCt50 25–70 mg/min/m3) (8). However, 
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Figure 1 Representatives of the G-series (tabun, sarin, soman, cyclosarin), V-series (VX, VR), IVA agents (GV), and Novichok series 
(16) of nerve agents (A-230, A-232, A234, A242, A-262)
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binding subsite, an acyl pocket, and a peripheral anionic 
subsite on the edge of the active site (28). The active site 
of AChE is lined with 14 highly conserved aromatic amino 
acid residues, which interact with the cationic substrate and 
put it in the position for hydrolysis (28, 29). Moreover, a 
strong electrostatic dipole (produced by seven acidic amino 
acid residues located near the entrance of the gorge) is 
oriented along the axis of the active site at the gorge’s 
bottom and accounts for attracting positively charged 
substrate and other ligands toward the active site (30). One 
crystallographic study has shown that the active site may 
have a back door through which the products of ACh 
hydrolysis are released (31). Unlike AChE, the BChE active 
site is lined with eight aromatic and six aliphatic amino acid 
residues, which enables it to hydrolyse substrates larger 
than ACh (32, 33).

AChE is present in the CNS and PNS, neuromuscular 
junctions, and red blood cells. BChE is more widespread, 
and is found in the CNS, PNS, pancreas, liver, intestines, 
heart, kidneys, lungs, and plasma/serum (34, 35). The 
primary and essential role of AChE is to break down the 
nerve impulse mediated by ACh, but it also has non-
cholinergic functions such as in neuritogenesis, cell-cell 
interactions, proliferation, apoptosis, synaptogenesis, 
activation of dopamine neurons, and amyloid fibre 
formation (36, 37). Although BChE is not as essential as 
AChE, it has a detoxifying role, as it scavenges tissue AChE 
from OPs, hydrolyses cocaine, aspirin, succinylcholine, and 
other xenobiotics, and metabolises some pro-drugs into 
their active forms (e.g. bambuterol to terbutaline) (32, 35, 
38). As it also hydrolyses ACh, it is a co-regulator of 
cholinergic neurotransmission (39).

Inhibition of more than 50 % of synaptic AChE activity 
will trigger the symptoms of poisoning, and death will occur 
mainly as a result of respiratory distress, when over 90 % 
of synaptic AChE is phosphylated by NA (11). As nicotinic 
and muscarinic receptors are localised in most organs, NA 
poisoning affects many systems in the body, and symptom 
severity depends on the dose, route, and duration of 
exposure (Table 1) (8, 23, 40, 41).

The nucleophilic attack of catalytic serine’s hydroxyl 
group on the phosphorus moiety of the NA leads to the 
phosphylation of AChE (Figure 2B) and consequently to 

of all NAs the most toxic is VX, regardless of exposure 
route (LD50 10 mg/70 kg man; LCt50 5–50 mg/min/m3) (8).

All NAs are chiral compounds. Tabun, sarin, cyclosarin, 
and VX have one chiral centre at phosphorus atom and 
therefore two isomers [P(+) and P(−)], while soman has an 
additional stereocentre at a carbon atom of the pinacolyl 
group, so it has two diastereoisomers, that is, four isomers 
[C(+)P(+); C(+)P(−) and C(−)P(−); C(−)P(+)] (24, 25).

CHOLINESTERASES

NAs and other OP compounds interact with serine 
esterases: AChE, butyrylcholinesterase (BChE), neuropathy 
target esterase, carboxylesterase, trypsin, chymotrypsin, 
and phosphorus triester hydrolases (aryldialkylphosphatases, 
paraoxonases, and diisopropyl fluorophosphatase) (11, 26). 
Being the structural analogues of the transition state in 
acetylcholine (ACh) hydrolysis, NAs act as potent 
irreversible inhibitors of serine esterases and are the 
substrates of phosphorus triester hydrolases (26).

This irreversible inhibition of AChE is what makes NAs 
so toxic. The physiological function of AChE is to break 
down (metabolise) the neurotransmitter ACh in the central 
and peripheral nervous system (CNS and PNS, respectively). 
ACh binds to and activates nicotinic receptors (a family of 
voltage-gated ion channels which mediate the faster, 
ionotropic component of cholinergic signalling) and 
muscarinic receptors (a family of G protein-coupled 
receptors which mediate the slower, metabotropic 
component of cholinergic signalling). The hydrolysis of 
ACh is a two-step process (Figure 2A). In the acylation 
step, the acetyl group of a substrate (ACh) is cleaved from 
the choline moiety to form a covalent bond to a serine 
residue of AChE. In the deacylation step, the acetyl group 
is hydrolysed from the serine residue. High rate of ACh 
hydrolysis, limited almost only by its diffusion to the 
synaptic cleft, singles out AChE as one of the most efficient 
enzymes known today (27). Both ChEs (AChE and BChE) 
belong to the family of serine hydrolases and to the 
superfamily of the α/β hydrolase fold enzymes. The active 
site of AChE is a 20 Å deep and 5 Å wide gorge divided 
into five structural subsites: an esteratic site containing a 
catalytic triad (His-Ser-Glu), oxyanion hole, a choline-
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Table 1 Symptoms of nerve agent poisoning arising from acetylcholine build-up at muscarinic and nicotinic membrane receptors (8, 
23, 40, 41)

System Symptoms

Brain Restlessness, headache, dizziness, convulsions, inhibition of central respiratory centres, loss 
of consciousness, coma

Eyes Blurred vision, conjunctivitis, myosis
Respiratory Rhinorrhoea, bronchoconstriction, bronchorrhea, pulmonary oedema
Cardiovascular Either tachycardia or bradycardia, and either hypotension or hypertension
Gastro-intestinal Cramping, abdominal pain, nausea, salivation, vomiting, defecation, urinary incontinence
Muscle Twitching, fasciculation, tremors, muscle cramps, paralysis 
Skin Increased sweating 
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the loss of its catalytic function. Unlike acetylated AChE, 
which is quickly regenerated by water, the hydrolysis of 
phosphylated AChE is extremely slow (42, 43).

Cholinesterases have different affinity for NA isomers 
due to the asymmetry of the ChE active sites gorge. AChE 
and BChE exhibit enantioselectivity, that is, preference for 
one enantiomer binding over another (11, 25, 44–46). For 
example, the P(−) isomers of sarin and VX are the most 
potent AChE inhibitors, and the C(+/−) P(−) isomers of 
soman are up to 50 times more toxic than the C(+/−) P(+) 
isomers (25).

Phosphylated AChE undergoes dealkylation (also 
known as aging, Figure 2B), and the substituent on the 
phosphorus atom of NA becomes negatively charged, 
impeding AChE reactivation (47–50). The half-time of 
aging of AChE conjugates varies with the NA and depends 
on pH and temperature. It can range from around 2 min 
with soman, 3 and 7 h with sarin and cyclosarin, respectively 
to more than 19 h with tabun and VX (26, 51, 52). 
Nevertheless, sarin- and VX-BChE conjugate will age 
slower than the corresponding NA-AChE conjugate, but it 
is the opposite with soman, cyclosarin, and tabun, whose 
OPs will form faster ageing conjugates with BChE than 
with AChE (26).

Another reaction is also possible, that is, reactivation 
of phosphylated AChE by nucleophiles stronger than water. 
Compounds with an oxime moiety (CH=NOH) can restore 
the activity of phosphylated AChE before it ages (42) 
through the nucleophilic attack of the oximate anion on the 
phosphorus atom of the phosphylated catalytic serine of 
AChE. The covalent bond between the NA and AChE 
adduct breaks, a phosphylated oxime is generated, and 
AChE is again catalytically active (Figure 2C) (42). This 
has been exploited for the development of potential NA 
poisoning antidotes. However, the reactivation of aged 
AChE is still an insurmountable challenge for scientists, 
even though some progress has been made in 2018, when 
Zhuang et al. (53) reported some re-alkylation of aged AChE 
with a member of the library of quinone methide precursors.

TREATMENT OF NERVE AGENT 
POISONING

NA poisoning is treated with an antimuscarinic drug, 
oxime reactivator of phosphylated AChE, and anticonvulsant 
if necessary (Figure 3).

Antimuscarinic drugs

When the scientists started to look into NA poisoning 
therapy in the 1930s, symptoms of the exposed victims 
pointed to atropine as potential remedy. Being a competitive 
muscarinic receptor antagonist, atropine blocks the effects 
of ACh on muscarinic receptors but has no effect on 
nicotinic receptors. Although it does not cross the blood-
brain barrier (BBB) readily, it has beneficial effects in the 

CNS and PNS, against central apnoea, oversecretion, and 
even convulsions and cardiac toxicity (54, 55). To this day, 
atropine has remained the first drug of choice against 
symptoms of NA poisoning, because muscarinic effects it 
counters are the most life-threatening. In the meantime, 
alternative, more lipophilic anticholinergic drugs such as 
benactyzine have been investigated to improve therapy (56).

Reactivators

Since atropine is ineffective against nicotinic effects 
and does not restore AChE activity, further research focused 
on finding compounds that could complement atropine, 
such as nucleophilic agents like hydroxylamine, hydroxamic 
acid, and oximes, which can restore AChE activity (57). 
The intent was to synthesise a compound whose nucleophilic 
potential would enable displacement of the phosphorus 
moiety conjugated at the catalytic serine of AChE and 
reactivate the enzyme. In the early 1950s, Irwin B. Wilson 
and Sara Ginsburg set out to design such a compound. The 
idea was to use neurotransmitter ACh (because of permanent 
positive charge on the quaternary nitrogen group) as a 
template, and their efforts resulted in the synthesis of 
pyridine-2-aldoxime methiodide, known as pralidoxime or 
2-PAM (58). Although synthesised without the knowledge 
of the AChE active site structure, 2-PAM was the first 
effective oxime reactivator of phosphylated AChE and 
remained in clinical use to this day.

The efficacy of 2-PAM varied with NA conjugated to 
AChE, and scientists directed their efforts toward designing 
more effective oximes that would cover a broader spectrum 
of OPs. Soon after 2-PAM, between 1958 and 1960, they 
synthesised trimedoxime bromide (TMB-4), methoxime 
(MMB-4), and obidoxime (23, 42).

In the late 1980s, Hagedorn and co-workers synthesised 
hundreds of oximes of the so-called H-series, among which 
HI-6 and Hlö-7 stood out (59–61). 2-PAM, obidoxime, 
HI-6, and TMB-4 became known as the standard oximes 
(Figure 3) and have been the only oximes approved for 
clinical and/or military use so far. Even so, their efficacy is 
not universal (61–63). 2-PAM, obidoxime, and HI-6 showed 
clinically relevant AChE reactivation in cases of sarin 
poisoning, obidoxime and HI-6 in cases of VX poisoning, 
and HI-6 in cases of cyclosarin poisoning (64). But none 
of the standard oximes is efficient against tabun poisoning 
at clinically relevant parameters (reactivation half-time of 
approximately 5 min and oxime concentration of 
<50 µmol/L) (64–66). The same is the case with soman 
poisoning due to the fast ageing of the soman-AChE 
conjugate (24).

Besides not being equally effective for all NAs, standard 
pyridinium oximes are hydrophilic and cannot pass the BBB 
due to the charged nitrogen atom. Therefore, only 1–10 % 
of the oximes’ plasma concentration is present in the brain, 
and their action is mostly limited to the PNS (67). Moreover, 
oximes cannot reactivate aged AChE and can also be toxic 
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in doses needed for reactivation of non-aged AChE. This 
is why many still search for oxime reactivators that could 
overcome these limitations.

Over the last 70 years, there were many attempts to 
design and synthesise better AChE reactivators resulted in 
thousands of candidate compounds. Although some showed 
more potency in reactivating inhibited AChE than the 
standard oximes, a universal reactivator is unlikely to be 
found. Here is why. The accommodation and orientation of 
an oxime is a key property for successful reactivation 
(68–71). Kinetically, the reactivation efficiency of an oxime 
is primarily attributed to the nucleophilic displacement rate 
of NA and to the affinity of the phosphylated ChE for the 
oxime (47, 48, 61, 68, 72–75). To improve oxime kinetics, 
scientists have designed and synthesised double- or triple-
binding mode reactivators. These compounds interact with 
multiple subsites of the active centre, including the 
peripheral anionic subsite of AChE, with the aim to increase 
enzyme’s affinity for the oxime (74, 76–79).

The search for potentially more effective reactivators 
also involved a variety of structural modifications in the 
number or type of the ring, number and position of oxime 
moiety, structure and position of connecting linkers, and 
structure and position of side-chain ligands (74, 80–84). 
Some of the research investigated Alzheimer’s drugs like 
tacrine or donepezil as precursors of new reactivators 
(85–87). In addition, a number of studies highlighted 
piperidine derivatives, tetrahydroacridine and tryptoline 
moiety-containing compounds, and oximes containing 
tetrahydroisoquinoline and phenyltetrahydroisoquinoline 
groups as potent reactivators (79, 86, 88–93). Several 
research groups focused on designing centrally acting 
oximes, compounds with no permanent positive charge but 

amenable to protonation, which would be able to cross the 
BBB. Upon establishing the pH-dependent equilibrium in 
the CNS, the protonated form would reactivate synaptic 
AChE (76, 91–101). In that respect, recent studies identified 
the RS194B oxime as capable of rapidly reversing 
symptoms caused by a lethal dose of inhaled sarin vapour 
and paraoxon aerosol in macaques (102, 103).

A number of strategies have also been investigated for 
better delivery of charged reactivators to the brain like 
targeting nano-particles (104, 105), using pro-drugs (106), 
enhancing the compound’s lipophilicity by adding fluoride 
or chloride to the oxime structure (98, 107, 108), 
administering efflux transporter P-glycoprotein inhibitors 
(like tariquidar) (109), or adding a sugar moiety (110, 111).

The tabun-AChE conjugate is especially hard to 
reactivate (52, 62, 112–117). One reason is the amino group 
of tabun, which sterically obscures oxime group access to 
the phosphorus moiety of tabun bound to the catalytic serine 
(52). Another is that resonance structures of tabun can be 
formed due to the free electron pair of the amino group of 
nitrogen, so the nucleophilicity of the oxime group is 
probably not high enough to reactivate such conjugate 
structures (112). Among the standard oximes, TMB-4 
showed some potential in reactivating the tabun-AChE 
conjugate, but the dose required for in vivo application is 
too toxic (62, 116, 117). So far, studies have shown that 
only pyridinium oximes with the para-positioned oxime 
group like K203, K048, K074, and K075 have sufficient 
potency, superior to TMB-4, to restore AChE activity after 
tabun inhibition (69, 116, 118). A more recent study with 
triazole containing oxime library pointed out several oximes 
that were better reactivators of the tabun-AChE conjugate 
than obidoxime and 2-PAM (74). As the ambition of finding 
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Figure 2 Hydrolysis of acetylcholine (A), phosphylation and aging (B), and reactivation of nerve agent-inhibited acetylcholinesterase (C)
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a unique reactivator is unrealistic, a solution may be in the 
combination of multiple oximes with complementary 
reactivity which would cover poisoning with a broad 
spectrum of NAs (119).

Non-oxime treatment alternatives have also been 
studied such as non-competitive antagonists and allosteric 
modulators selectively targeting nicotinic receptors 
(nAChR). Bispyridinium compound MB327 [1,1’-(propane-
1,3-diyl)bis(4-tert-butylpyridinium) diiodide] (Figure 4) 
was found to block the open ion channel of the human 
muscle-type nAChR (120). Its non-competitive antagonism, 
as well as in vitro reversal of the neuromuscular blocking 
action of tabun, soman, and sarin in guinea pigs showed 
that, unlike oximes, it can protect against several NAs when 
used in combination with other drugs (121, 122). Recently, 
a reactivation potential was also discovered with 4-amino-
2-[(diethylamino)methyl]phenol (ADOC) (Figure 4) (123). 
Several structural derivatives of ADOC were synthesised 
by De Koning’s group, and one of them (named “3l”) proved 
to be the most potent non-oxime reactivator so far reported 
(124, 125).

Despite many attempts and an outstanding number of 
synthesised oxime libraries, however, only a small number 
of compounds gets to be tested in vivo due to adverse 
pharmacokinetic and pharmacodynamics properties and/or 
low reactivation efficacy, especially against tabun or soman.

Anticonvulsant drugs

Another feature of NA poisoning is electrographic 
seizures, followed by motor convulsions (126). These can 
quickly progress to status epilepticus (SE) or more severe 
conditions, all contributing to mortality or neuronal damage 
in survivors. It is believed that the overstimulation of 
cholinergic pathways and hypoxia are the main causes of 
seizure onset (127). Seizures activate neuronal inflammation 
and induce signalling in astrocytes, which leads to higher 

expression of the glial fibrillary acidic protein (GFAP) 
(128). High levels of GFAP, in turn, cause astrogliosis and 
glial scarring (129). Seizures also activate microglia, which 
results in the release of both pro-inflammatory (IL-1β, IL-
1α, IL-6, IFN-γ) and anti-inflammatory (IL-10, IL-4, 
TGF-β, arginase) cytokines and reactive oxygen species 
(ROS) causing oxidative stress (128, 130–132). Therefore, 
OP-induced seizures require effective treatment to minimise 
brain damage such as treatment with benzodiazepine 
anticonvulsants diazepam, lorazepam, and midazolam (133, 
134). Other drugs are also being studied to that effect, 
including agonists of the inhibitory neurotransmitter system 
or antagonists of the excitatory neurotransmitter system 
(127) and compounds with neuroprotective properties like 
anti-glutamatergic drugs, including NMDA antagonists 
ketamine and gacyclidine or AMPA/GluK1 receptor 
antagonist tezampanel (135, 136).

PROTECTION OF NATIVE AChE FROM 
INHIBITION

Fast ageing of phosphonylated AChE and poor efficacy 
of therapy have prompted the scientists to look for other 
means of counteracting NA poisoning like sheltering native 
AChE from phosphylation. Pre-exposure application 
(pretreatment), which enhances the efficacy of post-
exposure therapy, however, is to be distinguished from 
prophylaxis, which omits the application of post-exposure 
therapy (137–140). Both protect native AChE from 
irreversible inhibition by NAs, but all NA exposure is highly 
likely to require subsequent therapy. Pretreatment is 
therefore desirable when exposure to NAs is expected, 
especially in the military. Protection can be achieved with 
anticholinesterase compounds, which allow a fraction of 
AChE to remain active in the presence of a phosphylating 

Figure 3 Standard pyridinium aldoxime reactivators of phosphylated acetylcholinesterase, antimuscarinic atropine, and anticonvulsant 
diazepam, currently approved for nerve agent poisoning therapy

Figure 4 Non-oxime compounds investigated as potential treatment in case of nerve agent poisoning (120, 123)
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agent (141, 142). It can also be achieved with bioscavengers 
that degrade NAs in the bloodstream before reaching their 
physiological targets (143, 144).

Anticholinesterase compounds

Pseudo-irreversible inhibitors like carbamates form a 
short-living covalent complex with the catalytic serin of 
AChE. Unlike dephosphylation, decarbamylation is 
relatively fast and AChE is soon spontaneously reactivated 
(40, 145, 146). One such natural carbamate, physostigmine 
(from the plant Physostigma venenosum), has been used in 
medicine to treat Myastheniae gravis for a while now, and 
so has the synthetic carbamate neostigmine. These 
compounds are effective against poisoning with several 
OPs, but only another carbamate, pyridostigmine, has also 
been proved effective against soman (141, 142, 147, 148). 
Pyridostigmine was introduced in military practice for 
pretreatment of NA poisoning in the 1980s (11, 141, 147), 
but application at effective doses has shown undesirable 
side effects (mostly gastrointestinal) and was associated 
with the Gulf War illness (11, 141, 147, 149). This problem 
was partly addressed by combining pyridostigmine with 
anticholinergics trihexyfinidil and benactyzine. The product 
is called PANPAL and is approved for use in the Czech 
army (148). Pretreatment with PANPAL and standard post-
exposure treatment has been proven effective against the 
G-series and VX (142, 148). However, pyridostigmine does 
not cross the BBB, so its prophylactic activity is limited to 
the PNS (142, 147). Carbamates that penetrate the BBB, 
like pyridostigmine-aprophen prodrugs (pyridophens) or 
physostigmine-scopolamine combinations, unfortunately, 
exhibited unwanted neurobehavioral effects (150, 151).

Research into reversible inhibitors that form noncovalent 
interactions with AChE (145) has yielded some promising 
options such as donepezil, huperzine A, and galantamine, 
which are usually used to treat neurodegenerative disorders 
like Alzheimer’s disease (152, 153). The most interesting 
is a plant alkaloid galantamine (found in amaryllis, daffodil, 
and snowdrop) (152, 153). It crosses the blood-brain barrier, 
exhibits the neuroprotective properties (nicotinic allosteric 
ligand), and is not toxic at therapeutic doses (153, 154). 
Moreover, the half-life of galantamine in circulation is quite 
long, up to 7 h, and can be administered orally (152, 154).

Oximes are also investigated as reversible AChE 
inhibitors (23, 142, 155), and a transdermal patch containing 
HI-6 (TRANSANT) has been approved for use in the Czech 
and Slovakian military (11, 156). Generally, short 
circulation half-life, toxicity, and the inability of oximes to 
cross the BBB are shortcomings that need to be addressed 
when considering oximes as pretreatment.

Bioscavengers

Since the late 1980s, research has been looking into 
enzymes of human or other origin which neutralise NAs in 
the bloodstream, before they reach target organs or get 

stored in the adipose tissue. There are such endogenous NA 
scavengers produced by the organism [e.g. human BChE, 
paraoxonase (PON1), albumin, animal carboxylesterase] 
(157–159), but they can only protect against low doses of 
NAs and either react too slowly with them or prefer the less 
toxic NA isomer. This is why research has been focused on 
exogenous bioscavengers that act rapidly against a broad 
spectrum of NAs, have prolonged circulation life (ideally 
more than 10 days), have no immunogenic or toxic 
properties, and are available in sufficient amounts to achieve 
effective concentrations at a reasonable cost (143, 160, 161). 
Some of these issues can be addressed by PEGylation or 
by encapsulating recombinant human or non-human 
enzymes in nanoparticles (119, 162, 163).

Bioscavengers can be divided in three categories: 
stoichiometric, oxime-assisted catalytic (also sometimes 
referred to as pseudo-catalytic), and catalytic (Figure 5).

Stoichiometric bioscavengers

Stoichiometric bioscavengers react with an NA in a 1:1 
ratio, i.e. one molecule of the enzyme is phosphylated by 
one molecule of NA. This way NA concentration in the 
bloodstream decreases, but the enzyme remains permanently 
inhibited. Stoichiometric bioscavengers are considered 
effective if NA is removed from the bloodstream within 
one circulation period, which is about 7 min in humans 
(143).

Human BChE is the most studied stoichiometric 
bioscavenger (159), as it rapidly reacts with NAs and other 
OPs. However, its concentration in human plasma is about 
50 nmol/L, which is not enough to counteract NA poisoning. 
In a 70-kg human this concentration should reach 
~2400 nmol/L (corresponding to a dose of 200 mg) to 
protect native AChE against 2-fold soman LD50 (164), and 
higher concentrations have been shown to protect against 
as high as 5.5-fold soman and even 8-fold VX LD50 in 
animal studies (165). These prophylactic concentrations 
can only be achieved with exogenous BChE.

The most convenient source of human BChE is outdated 
plasma (166). BChE from this source is a tetrameric protein 
with a circulatory half-life of about 12 to 15 days and it 
does not have any toxic or immunogenic effects on people 
(160, 167).

Considering that the isolation and purification of human 
BChE from plasma are quite expensive, and the availability 
of plasma depends on donors, alternative production of 
recombinant human BChE (168) has been investigated in 
expression systems such as Chinese hamster ovary cells 
(169, 170), wine fly cells (171), silkworm larvae (172), 
tobacco (173), maize (174), rice (175), transgenic goats 
(176), yeast (177), bacteria (178), and, lately, adenovirus-
mediated human BChE delivery (179). The major 
challenges with these alternatives are that high BChE 
expression is not easy to achieve and the enzyme has to be 
purified from toxic contaminants. In this respect, the 
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development of a new affinity method on huprine gel was 
a ground-breaking achievement, as it reduced the cost and 
time of purification (171, 180). Another achievement was 
tetramerisation of monomeric recombinant BChE by adding 
polyproline peptides (181) or polyethylene glycol polymers 
(182) or by co-expression of the proline-rich end terminal 
attachment domain (PRAD) to prolong its circulation life 
(183). Biological half-life in the bloodstream can also be 
prolonged by encapsulation, polysialylation, PEGylation, 
and fusion of recombinant human BChE with albumin (170, 
176, 183–185).

Human recombinant AChE has also been investigated 
as a potential stoichiometric bioscavenger. Bloodstream-
stable nanoparticles containing AChE or plant-derived 
human AChE have been shown effective in scavenging OP 
molecules (186, 187). In addition, PEGylated AChE has 
demonstrated greater scavenging efficiency and higher 
stereoselectivity for the toxic isomers of soman, tabun, and 
VX than BChE (188, 189).

Oxime-assisted catalytic bioscavengers

Oxime-assisted catalytic bioscavengers are enzyme 
scavengers combined with an efficient reactivator, which 
allows them to degrade NAs by continuous cycles of 
inhibition and reactivation. In these two-component 
systems, the most important is the rate of dephosphylation, 
as it has to quicker than aging (116, 190). The most logical 
approach is to combine human plasma BChE with an oxime 
to enhance NA degradation. However, combining BChE 
with standard pyridinium oximes proved to be ineffective, 
as these oximes are mainly AChE reactivators (191). 
Research has therefore looked into several promising newly 

synthesised oximes that reactivate phosphylated BChE (70, 
191–197), and some progress has been achieved with new 
classes of BChE reactivators like quaternary benzaldoximes 
(192) imidazole aldoximes (193, 195), cinchona derivatives 
oximes (196), and hydroxypyridine aldoximes (87, 90). 
Furthermore, members of the oxime libraries that can cross 
the BBB were found to effectively reactivate sarin-, 
cyclosarin-, VX-, and paraoxon-inhibited BChE and AChE 
(91, 108, 193).

Several studies reported that site-directed mutagenesis 
of the AChE active site resulted in enzyme variants with 
increased phosphylation and/or reactivation rate, reduced 
aging rate, and a combination of these features (68, 161, 
190, 198, 199). Combined with an oxime, such enzyme 
exhibits different in vitro kinetics, which further implies 
which oxime-enzyme pair could be converted into in vivo 
scavengers of different OPs (115, 200-203). Certain AChE 
mutants have been shown to slow down the aging of their 
conjugates with soman (188, 190, 204). The most effective 
among them is the AChE mutant F338A, in which the 
phenylalanine of the choline binding site at position 338 is 
mutated to alanine (204, 205). The F338A mutation can 
readily be combined with the mutation of tyrosine to alanine 
at position 337 (Y337A) to enlarge the enzyme’s active site 
gorge dimensions, which should enable the positioning of 
the oxime in the vicinity of the phosphylated catalytic serine 
to ensure reactivation (68, 161, 190). The idea of the Y337A/
F338A mutant is therefore to slow down aging and speed 
up the reactivation rate, which was demonstrated in vitro 
and ex vivo, when soman was quickly degraded in cycles 
of Y337A/F338A inhibition and reactivation by HI-6 (71, 
190). Effective oxime-assisted catalytic soman and VX 

Figure 5 Bioscavenging of native acetylcholinesterase from inhibition with nerve agents. A) stoichiometric bioscavenging; mole-to-
mole reaction between exogenous enzyme scavenger and nerve agent, B) oxime-assisted catalytic scavenging; exogenous enzyme 
turned into catalytic bioscavenger in the presence of an oxime enabling nerve agent degradation by cycles of inhibition and reactivation 
of exogenous enzyme scavenger, C) catalytic bioscavenging; low amount of exogenous enzyme scavenger rapidly hydrolyses nerve 
agent with a turnover
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bioscavenging has also been reported in vivo with sub-
stoichiometric amounts of the Y337A/F338A AChE mutant 
and an oxime reactivator (71, 206).

Other recent ex vivo studies showed some progress with 
a combination of Y337A and novel pyridinium aldoxime 
(analogous to 2-PAM) in tabun degradation in whole human 
blood (78, 161).

Finding an oxime that would effectively reactivate 
native ChEs in whole blood would be an improvement over 
stoichiometric or oxime-assisted catalytic scavenging in 
terms of cost, immunity, or circulation time challenges. 
Recent studies reported such potential with 3-hydroxy-2-
pyridine aldoxime and chlorinated double-charged mono-
oxime, which were successful in ex vivo degradation of VX, 
sarin, cyclosarin, and paraoxon (91, 108).

Catalytic bioscavengers

Catalytic bioscavengers are enzymes that can hydrolyse 
NAs into non-toxic products. The advantage of catalytic 
over stoichiometric bioscavengers is that they need lower 
doses to provide superior protection of native AChE from 
phosphylation, because one enzyme degrades multiple NAs 
molecules (207, 208). Several natural occurring human 
enzymes whose substrates are OPs are being investigated 
as potential catalytic bioscavengers, such as PON1 from 
plasma, erythrocyte and liver prolidase, carboxylesterase, 
platelet activating factor acetylhydrolase, liver senescence 
marker, and cytosolic aminopeptidases (142, 144, 209–212).

The greatest interes is for PON1 which hydrolyses 
several OP compounds at a high rate, it is enantioselective, 
prefers the more toxic S(–) enantiomer of tabun, but, 
unfortunately, shows greater enantioselectivity to the less 
toxic isomers of soman (213, 214). Increasing PON1 
catalytic activity up to 100 times would be sufficient to 
effectively scavenge various nerve agents, which is why 
scientists have been looking into mutations that would 
increase its catalytic activity (142, 208, 209). PON1 can be 
isolated from plasma but is complexed with HDL 
cholesterol, which renders isolation and purification 
expensive and complicated, and the isolated enzyme 
unstable (142, 209). Directed evolution of a chimeric PON1 
via gene shuffling, combined with high-throughput 
screening, has resulted in PON1 that can quickly hydrolyse 
the most toxic enantiomers of the G-agents and effectively 
protect against cyclosarin toxicity in vivo (208, 215). 
However, no PON1 mutant has been found so far that can 
quickly hydrolyse V-agents.

B a c t e r i a l  p h o s p h o t r i e s t e r a s e s  ( P T E ) , 
diisopropylfluorophosphatase (DFPase) isolated from the 
squid, bacterial prolidase, fungal laccase, and haem 
chloroperoxidase also hydrolyse OPs (144, 216). These 
enzymes are used for destroying nerve agent supplies, 
decontamination of soil, clothing, and water. Encapsulation 
with nanoparticles gives them potential to counteract NAs 
(216). The most potent is the PTE obtained from 

Brevundimonas  (Pseudomonas )  diminuta .  I t s 
enantioselectivity has been redesigned by direct evolution, 
and the evolved mutants successfully and quickly hydrolyse 
the most toxic isomers of the V- and G-series and are 
effective in pre- and post-exposure treatments (217, 218).

There were attempts to transform BChE into a catalytic 
scavenger by introducing mutations. The first studied 
variant was that of human BChE with glycine at position 
117 replaced by histidine (G117H), which introduced a 
second nucleophile. This BChE variant can slowly 
hydrolyse paraoxon, sarin, VX, and some other OPs (189, 
216). Other mutants were also tested but were even less 
efficient than G117H.

Research also looked into biological systems such as 
monoclonal catalytic antibodies or artificial enzyme systems 
based on functionalised cyclodextrins with nucleophile 
groups (219, 220). Yet the greatest potential lies in nano-
encapsulated cocktails of enzymes that could be used in 
injectable formulations and have broad-spectrum activity 
(144, 216).

CASUALTY TREATMENT

Symptoms of cholinergic crisis are common indications 
for antidote administration on the battlefield, but there are 
also ready-to-use kits (ChE check mobile or Test mate) for 
determining erythrocyte AChE activity on the spot (221, 
222). Inhalation of G-agents results with a very fast onset 
of symptoms requiring immediate therapy to enable 
survival. V-agent poisoning, in addition, requires continuous 
and prolonged treatment with oximes (64).

Immediate post-exposure treatment of NA casualties 
involves decontamination and antidote administration, 
usually provided by the closest soldier and/or first responder 
(combat medic). It is important that first responders are 
adequately protected (charcoal masks, gloves, protective 
clothing) from contamination from casualties or the 
environment. Decontamination has to be as quick as 
possible to limit NA absorption through skin and prevent 
contamination of the rescuers. Contaminated items of 
clothing are to be removed and skin scrubbed and rinsed 
profusely with water (unless there is none) and soap (if 
available). Alternatively, there are skin decontamination 
kits available for military personnel, such as M291, which 
is a mixture of reactive adsorbents (Ambersorb 348F 
carbonaceous adsorbent) and charcoal or RSDL, which 
contains Dekon 139 and a small amount of 2,3 butadiene 
monoxime (DAM) dissolved in a solvent composed of 
polyethylene glycol monomethyl ether (MPEG) and water 
(135).

Emergency treatment starts with intramuscular injection 
of atropine and an oxime reactivator which is self-
administered (autoinjectors) or administered by the closest 
soldier or a first responder (26), especially if the casualty 
is a civilian. Autoinjectors contain atropine (2 mg) or a 
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mixture of atropine and oxime and/or anticonvulsant 
(diazepam or its water-soluble formulation avizafone) (223, 
224). Oximes approved for use include 2-PAM (USA, 
France, UK), obidoxime (Germany, Norway, the 
Netherlands), HI-6 (Canada, Croatia, Czech Republic, 
Sweden), and TMB-4 (Israel) (64, 225, 226). Depending 
on the country, each soldier is typically equipped with one 
to three kits and one diazepam auto-injector. One 
autoinjector is indicated for a casualty with only myosis 
and severe rhinorrhoea. The administration of the second 
autoinjector depends on the severity of symptoms and 
respiratory distress. The recommended interval between 
kits is about 5–15 min. The third kit and diazepam are 
recommended if the casualty shows signs of apnoea, muscle 
fasciculation or twitching, seizure or loses consciousness 
(223, 224). If the casualty shows signs of atropinisation 
(dry mouth and skin, increased heart rate, dilated pupils) 
after the application of atropine-autoinjector, it is likely that 
NA poisoning did not take place (55, 227).

If a victim manifests breathing difficulties, emergency 
responders should provide supportive treatment, such as 
intubation and oxygen ventilation, before evacuation from 
the hot zone and transfer to the hospital. If the symptoms 
of poisoning persist on hospital admission, post-exposure 
treatment should be continued promptly. Otherwise, if 
symptoms subside, erythrocyte cholinesterase activity is 
first to be determined to confirm poisoning. If indicated, 
atropine (2 mg for adults or 20 µg/kg for children) is to be 
applied intravenously every 5–10 min until the signs of 
atropinisation appear (227). Symptomatic patients should 
additionally receive an oxime intravenously, e.g. 30 mg/kg 
bodyweight of pralidoxime (2-PAM) chloride or mesylate, 
every 4–6 h (227). The duration of oxime treatment will 
depend on clinical response and AChE activity 
measurements, but it usually lasts as long as atropine 
treatment, which is up to 48 h but could be prolonged in 
case of VX poisoning due to the depot of VX.

As AChE/BChE activity tests can just confirm the 
inhibition, NA can only be identified with techniques like 
gas or liquid chromatography/mass spectrometry (GC-MS 
or LC-MS) in body fluids (e.g. plasma or urine) to ensure 
administration of adequate oxime (if available) and best 
chances of survival and recovery (228).

CONCLUSION

Numerous oxime libraries and approaches have been 
studied over the last 70 years in order to improve NA 
poisoning therapy or protect native AChE from inhibition. 
It is still an ongoing effort and further research is needed 
to optimise the pharmacokinetics and pharmacodynamics 
of new potential reactivators and to enhance the half-life 
of exogenous bioscavengers and diminish their 
immunogenicity.
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Detoksikacija živčanih bojnih otrova

Fosfilacijom esencijalnog enzima acetilkolinesteraze (AChE) živčanim bojnim otrovom, enzim postaje ireverzibilno 
inhibiran, što dovodi do nakupljanja neurotransmitera acetilkolina i kolinergičke krize zbog prekomjerne stimulacije 
muskarinskih i nikotinskih membranskih receptora u središnjem i perifernom živčanom sustavu. U teškim slučajevima 
desenzibilizacija receptora rezultira hipoksijom, nesvjesticom i zastojem disanja, nakon čega slijedi smrt. Stoga je brzo 
djelovanje presudno za preživljavanje osobe izložene živčanom bojnom otrovu. Standardna terapija u slučaju otrovanja 
uključuje antikolinergik atropin i oksimski reaktivator fosfilirane AChE. Kako bi se očuvala aktivnost nativne AChE u 
slučaju izloženosti živčanom bojnom otrovu, istražuju se i drugačiji pristupi terapiji, kao što su spojevi koji kratkotrajno 
i reverzibilno inhibiraju AChE te egzogeni enzimi koji djeluju kao biološka čistila živčanih bojnih otrova. U ovom 
preglednom radu cilj nam je predstaviti trenutačne i potencijalne pristupe u terapiji i detoksikaciji živčanih bojnih otrova.
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