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This article brings an overview of mycotoxin co-occurrence in foods in Croatia and neighbouring countries 
and experimental data from mycotoxin interaction studies involving Fusarium toxins, ochratoxin A (OTA), 
and afl atoxin B1 (AFB1). Only a few studies of combined mycotoxin toxicity have employed a mathematical/
statistical design, while others have used common statistics in order to compare the effects of mycotoxin 
mixtures with effects of single toxins. So far, most studies have observed additive or synergistic effects, 
suggesting that these mixtures pose a signifi cant threat to human and animal health.
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Mycotoxins are the secondary metabolites of 
moulds and invariably contaminate food and feed 
all over the world. Among hundreds of known 
mycotoxins, afl atoxins (AFs), ochratoxin A (OTA), 
fumonisins (FBs), zearalenone (ZEA), and 
trichothecenes stand out as the most common 
contaminants in a variety of food. Ingestion of these 
mycotoxins may cause acute toxicity or chronic 
disorders, depending on concentration and duration 
of exposure. Moreover, they are often responsible 
for fi nancial losses in food production and livestock 
breeding. Most countries have legislation that 
prescribes maximum permissible concentrations of 
mycotoxins in certain types of food, but these 
regulations vary signifi cantly between them. Croatia 
has harmonised its legislation on mycotoxins in 
foods with the European Union regulations (1).

Even though food is often contaminated with more 
than one mycotoxin, most studies are limited to the 

toxicology of a single mycotoxin. This review 
summarises the fi ndings on mycotoxin co-occurrence 
in food in Croatia and neighbouring countries and the 
experimental data on their combined toxicity.

Co-occurrence of mycotoxins in food

Most of the earlier mycotoxin surveys were 
focused on the occurrence of single toxins in food. 
For example, studies conducted in Croatian and 
Bulgarian endemic nephropathy (EN) areas were 
focused on the levels of resident exposure to OTA (2, 
3). Cereals are commonly contaminated with the 
Fusarium species and therefore often analysed for the 
presence of Fusarium mycotoxins such as FBs, ZEA, 
deoxynivalenol (DON), diacetoxiscitpenol (DAS), 
beauvericin (BEA), or T-2 toxin (4-6), but only a 
limited number of studies have paid attention to or 
specifi ed the percentage of co-contaminated samples. 
Table 1. summarises the co-occurrence of various 
mycotoxins in food samples in Croatia and 
neighbouring countries over the last fi fteen years.

* The subject of this article has partly been presented at the International 
Symposium “Power of Fungi and Mycotoxins in Health and Disease” held in 
Primošten, Croatia, from 19 to 22 October 2011.
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Table 1 Co-occurrence of some mycotoxins in food from Croatia and the neighbouring countries

Sample / Year/
Country 

Mycotoxin Contamination / 
%

Range /
μg kg-1

Co-contamination / 
%

Reference

Pre-harvest maize /
1992-93 /
Italy*

FB1

BEA
100
67

125000 to 250000
5000 to 10000

67 81

Stored maize /
Hungary

FB1

ZEA
DON
T-2

70.8
87.5
70

41.7

50 to 19800
10 to 11800
70 to 21200

60 to 390

Not specifi ed 4

Harvested maize/
Hungary

FB1

ZEA
DON
T-2

70
17
13
39

95 to 52400
6 to 79

50 to 118
50 to 551

Maize /
1996-97 /
Croatia** 

OTA
FB1

BEA

29
95
11

0.26 to 614
12 to 11661
13 to 1864

Two toxins; 6
Three toxins; 2

7

Grains and feeds /
1998-2004 /
Croatia***

T-2
DAS
DON

16.8
27.6
41.2

100 to 700
100 to 500

100 to 3440

Not specifi ed 6

Cereals /
1999 /
Bulgaria** 

OTA
CTN

35
9.4

<0.5 to 140
<5 to 420

22 8

Maize /
2002 /
Croatia 

OTA
FB1

FB2

33
100
13

0.73 to 2.54
196.8 to 1377.6

68.4 to 3084

Two toxins; 55
Three toxins; 37

82

Foodstuffs /
2002 /
Italy

FB1

FB2

DON

26
35
84

10 to 2870
10 to 790
7 to 930

Not specifi ed 5

Spices /
2004 /
Hungary

AFB1

OTA
21
36

6.1 to 15.7
10.6 to 66.2

Not specifi ed 83

Total diet
Serbia** 

OTA
CTN

34
16

0.29 to 2.25 10 9

Maize, feed /
2007 /
Croatia** 

AFs
OTA
ZEA

FB1+ FB2 + FB3

24.3
16.2
92
27

2.3 to 10.3
2.5 to 31.7

12.5 to 1182
200 to 20700

Two toxins;
4.2 to 54

Three toxins;
4.2 to 7.6

15

Pasta /
Italy

AFB1

OTA
DON

Not detected
96.3
81.5

0.2 to 0.52
35.1 to 450.0

Not specifi ed 84

* Only six maize samples were analysed
** Samples were taken in the EN area
*** A total of 465 samples were analysed

FB1 is the most frequent maize contaminant 
which possesses several toxic properties (Table 2). 
It occurs in signifi cantly higher concentrations than 
any other Fusarium toxin. It is often accompanied 
in maize by ZEA, DON, or OTA. Due to its 

nephrotoxicity, special attention has been paid to 
its co-occurrence with OTA as well as to co-
occurrence of OTA and citrinin (CTN), particularly 
in the EN areas (2), as these areas report higher crop 
contamination with OTA and FB1 or OTA and CTN 
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Table 2  Mechanism of action and toxic properties of some mycotoxins, frequently found as food and feed 
contaminants.

Mycotoxins Primary events at the cellular level Toxic properties References
Afl atoxin B1 Metabolic activation →

AFB1-8,9-epoxide → modifi cation of 
major cell macromolecules

Hepatotoxic, 
immunosuppressive, 
carcinogenic (group 1, 
IARC), teratogenic, 
mutagenic

66, 67

Beauvericin Complex with essential cations (Ca2+, 
Na+, K+) → inhibition of cation-selective 
channels in lipid membranes,
inhibitor of cholesterol acyltransferase 

Antimicrobial, insecticidal
cytotoxic, ionophoric action

85

Citrinin Affects mitochondrial permeability 
transition, calcium fl ux, and cytochrome c 
release from mitochondria,
inhibits macromolecule biosynthesis → 
cell death

Nephrotoxic, hepatotoxic
genotoxic (group 3, IARC), 
teratogenic, immunotoxic 

86-88

Deoxynivalenol Inhibition of protein synthesis → cell 
death, disruption of cytokine regulation

Causes nausea, food refusal, 
vomiting, diarrhoea, 
immunotoxic, IARC group 3

89-91

Diacetoxyscirpenol 
and T-toxin

Inhibition of protein synthesis → cell 
death
T-2 → erythrocyte lysis, induction of 
lipid peroxidation, apoptosis, inhibition 
of mitochondrial electron transport

Alimentary toxic aleukia 
(infl ammation of the skin, 
vomiting, damage to 
hematopoietic tissues, 
haemorrhagia),
IARC group 3

89-92

Fumonisin B1 Inhibition of ceramide
synthase → changes in sphingolipid 
metabolism, → protein kinase activity,
oxidative stress →
oxidative damage of cell macromoleculs

Equine 
leukoencephalomalacia, 
porcine pulmonary oedema, 
hepatotoxic, nephrotoxic
immunosuppressive, 
carcinogenic (group 2B, 
IARC)

89-91, 93

Ochratoxin A Competition with phenylalanine and 
inhibition of Phe-dependent enzymes,
inhibition of protein and DNA synthesis, 
mitohondrial
transport system and
transport of organic anions and cations, 
oxidative stress,
DNA damage, affects glucose metabolism 
and Ca2+ homeostasis,

Nephrotoxic, neurotoxic
hepatotoxic, affects blood 
coagulation, immunotoxic
carcinogenic (group 2B, 
IARC)
teratogenic

9, 50, 94

Zearalenone Resembles 17b-oestradiol → binds to 
oestrogen receptors in mammalian target 
cells 

Disruption of hormonal 
control, IARC group 3

89, 91

than non-EN villages in Bulgaria, Croatia, and Serbia 
(7-9). Until recently it was thought that FBs were 
produced only by the Fusarium species that 
contaminate maize and that their occurrence in 
foods was limited to that substrate. However, black 

Aspergilli, including A. niger and A. awamori, 
which contaminate substrates with a high sugar 
content such as dried fruits, are able to produce 
FB1–4, 3-epi-FB3, 3-epi-FB4, iso-FB1, and two iso-FB2,3 
forms (10). Therefore, FBs and OTA could co-

Šegvić Klarić M. ADVERSE EFFECTS OF COMBINED MYCOTOXINS
Arh Hig Rada Toksikol 2012;63:519-530



522

contaminate these substrates as well as grapes, and 
both toxins could be expected in red wine (11). In 
addition, A. niger strains, which have extensively 
been used in biotechnology and fungal mycelium 
from fermentation as animal feed, can produce both 
toxins (12). Taking into account these investigations, 
FBs and OTA could be expected in various foods 
and not only in maize.

Mould production of mycotoxins in food is 
infl uenced by a number of factors such as temperature, 
water activity, substrate composition, mould 
physiology, or interactions with other microbes (13). 
All these factors are directly linked to climate 
change. For example, the optimal temperature for 
the formation of AFs is 33 °C, and these toxins are 
far more common in the hot tropical and subtropical 
regions. With current climate changes, however, AFs 
may soon become more common in the temperate 
areas of Europe as well (14). The case in point are 
recent reports from Croatia; AFs were found in 
relatively many cereal samples (24.3 %) and feed in 
respect to earlier studies (15, 16). The increasing 
incidence of AF producers (A. fl avus) in moderate 
climate zones may in turn reduce the number of 
Penicillium OTA producers, as OTA production 
requires lower temperatures (14). The optimal 
temperature for the formation of Fusarium toxins 
is between 20 °C and 30 °C, and one might expect 
a reduction in their incidence with temperature 
rising above 30 °C. However, F. verticillioides, a 
producer of the FBs which frequently infect maize in 
Southern Europe, has been associated with dry weather 
during grain fi ll and late season rains (17). Therefore, 
the production of FBs will be favoured by the climate 
change (18). Mild temperature and rain during maize 
growth makes the plant susceptible to infection by F. 
graminearum, a producer of DON and ZEA. The 
production of ZEA is also favoured by temperature 
fl uctuations (19). In addition, cereal infections by 
Fusarium species are spread by insects whose number 
is also increasing due to the climate change (14, 18). 
All this suggests that increased occurrence of AFs in 
food and co-occurrence with Fusarium toxins may 
become a food safety problem in this part of Europe 
in the near future.

Mycotoxin interactions at the cellular level: cell 
models and statistics

Combined toxicity is very hard to predict because 
it is infl uenced by several factors, including chemistry 
and mechanism of action, toxicodinamics and 

toxicokinetics, experimental design and endpoints of 
the study as well as statistical aspects (Figure 1). The 
best approach to studying combined toxicity is to fi nd 
out how a single mycotoxin acts at the cellular level 
and how it interacts with another mycotoxin (20). 
Riley (21) has indicated where mycotoxins can 
interfere in the cascade of cell machinery and thus 
affect cellular function. For example, deregulation of 
calcium ions can at the same time affect mitochondrial 
function and activate cell signal molecules or 
endonucleases, which in turn can lead to the inhibition 
of protein synthesis or to DNA or cell membrane 
damage, and fi nally to cell death. This means that 
multiple mycotoxins can affect certain targets and 
initiate more than one event in the cell machinery 
leading to extremely complicated cell response (20, 
21). Table 2 shows the toxic properties and toxicity 
mechanisms of some Fusarium toxins, AFs, OTA, and 
CTN, which frequently contaminate food in Croatia 
and the neighbouring countries.

Over the last few years researchers have used more 
and more cell cultures to study the mechanisms of 
mycotoxin action (cell-specifi c function toxicity) and 
to predict the outcome of mycotoxin mixtures. Cell 
cultures have many limitations such as immortalisation, 
limited survival, metabolic imbalance, or absence of 
tissue communication (22). Nevertheless, these in vitro 
systems are particularly useful for studying the 
interaction between low-molecular-weight compounds 
such as mycotoxins and their mixtures, and cell 
macromolecules. For toxicity screening, Gutleb et al. 
(23) recommend that several cell lines are used, as 
they differ in sensitivity. For example, some mammalian 

Figure 1  Influence of various factors on mycotoxin 
interactions outcome in experimental model
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cells are sensitive to fumonisin cytotoxicity. 
Furthermore, different cell lines can answer specifi c 
questions related to mycotoxin kinetics, active 
transport, metabolism, or biotransformation (22). For 
example, Caco-2 cell (human epithelial colorectal 
adenocarcinoma) layers are useful for studying 
absorption in the small intestine, because these cells 
morphologically and functionally resemble enterocytes 
in the small intestine (24); Hep G2 cells (human 
hepatocellular carcinoma) are useful for studies of 
liver metabolism and toxicity of xenobiotics, while 
artificially increased expression of specific P450 
cytochromes makes them sensitive to promutagens 
such as afl atoxins or related mycotoxins (25). Human 
lung adenocarcinoma (A549) cells express phase I and 
phase II enzymes involved in detoxification or 
bioact ivat ion of  respira tory toxins  (e .  g . 
sterigmatocystin-STC and Stachybotrys toxins) and 
are morphologically and functionally consistent with 
type II pulmonary epithelial cells in vivo (26). A 
parallelogram approach makes it possible to compare 
data derived from animal cell studies and animal-
derived data as well human-derived in vitro systems 
and animal cell systems (22).

Choosing the right cell model and carefully 
planning experimental design for studying mycotoxin 
interactions are essential for accurate mathematical 
and statistical analysis. So far, only a few mathematical/
statistical models have been applied for mycotoxin 
mixture experiments, including the central composite 
design, full factorial design (27, 28), ray design (29), 
isobolographic analyses (30, 31), and unpaired t-test 
for the comparison between expected and measured 
toxicity of a mycotoxin mixture (28, 32-37). The aim 
of these mathematical designs is to predict combined 
mycotoxin effects based on the comparison between 
the observed and expected effects of a mycotoxin 
mixture. The ray design provides constant mixture 
ratios considering the concentration-response 
relationship. This design compares responses to 
concentration addition of individual toxins and can be 
related to the comparison between the expected and 
measured toxicity of combined mycotoxins analysed 
by the t-test. An alternative is the composite design (n 
x n), where particular mixture compositions are 
selected and analysed using the full factorial design 
to detect interactions at various mixture ratios. The 
isobolographic analysis is also based on the 
concentration-response relationship of individual and 
combined mycotoxins and provides a combination 
index as a quantitative measure of the degree of 

interaction between mycotoxins in the mixture. These 
mathematical/statistical designs were employed for 
studying interactions between Fusarium mycotoxins 
(27, 30, 31), CTN, and OTA (28, 29, 32, 37), then OTA 
and FB1 or BEA (33-36), and between AFB1 and OTA 
or FB1 (38, 39). The results of these studies will be 
discussed in the following sections.

Interactions between Fusarium mycotoxins

Studies of trichothecenes are mainly focused on 
their cytotoxic and immunomodulatory effects. 
Speijers and Spejiers (20) have reviewed studies of 
interactions between trichothecenes (DON, DAS, T-2, 
nivalenol-NIV and moniliformin-MON) as well as 
between ZEA and FB1, including the one by Tajima 
et al. (27) and Thuvander et al. (40). In the latter study 
trichothecenes DON, DAS, T-2, and NIV inhibited 
both the proliferation of human lymphocytes and 
immunoglobulin (Ig) production in vitro. Combinations 
of NIV and other trichothecenes resulted in additive 
toxicity, while DON combined with T-2 or DAS 
showed a slight antagonism. Tajima et al. (27) 
investigated the inhibition of DNA synthesis in the 
mouse fi broblast cell line L-929 treated with NIV, 
DON, T-2, ZEA, and FB1 alone and in two-toxin 
combinations. Single toxins showed concentration-
dependent inhibitory effects in the following order: 
T-2>DON and NIV>ZEA, while FB1 induced cell 
proliferation. Combinations produced additive effects 
at lower concentrations of individual toxins, while no 
additive effect was detected at high concentrations. 
ZEA and FB1 and NIV and T-2 showed synergistic 
effects in the second, “screening stage” of the 
experiment. These particular mixtures were then 
separately studied using the full factorial design, which 
detected synergism between NIV and T-2 , but did not 
confi rm the one between ZEA and FB1. The authors 
concluded that the effect of mycotoxin mixture cannot 
be predicted solely on the basis of the effect of the 
individual toxins.

Several studies (41-43) found epithelial porcine 
kidney (PK15) cells highly sensitive to relatively low 
concentrations of trichothecenes and sphinganine 
analogues and useful in studying the toxicity of 
combined Fusarium mycotoxins (fusarochromanone-
FUCH, NIV, 4-ac-NIV, 15-acNIV, scirpentriol-SCIRP, 
and DAS) found in rice culture extracts of F. equiseti. 
The relationship between single toxins was determined 
by the factor analysis based on correlations, while the 
relationship between the toxicity of culture extracts 
and contribution of toxins was studied using the 
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multiple regression analysis. The cytotoxicity of 
extracts was mainly attributed to the combination of 
FUCH and 15-ac-NIV, while SCIRP or DAS were also 
implicated in this mixture (42).

In a study by Luongo et al. (44), FB1 and α-ZEA 
alone exerted different immunomodulatory effects on 
human lymphoblastoid Jurkat T cells, but in 
combination FB1 induced concentration-dependent 
proliferation while α-ZEA was cytotoxic. The isobole 
analysis showed that this mixture potentiated α-ZEA 
cytotoxicity. In addition, this mycotoxin combination 
significantly reduced interferon γ (INFγ) mRNA 
expression compared to α-ZEA alone. Using the 
isobole analysis Ruiz et al. (30, 31) showed that a 
combination of BEA and DON or T-2, as well as the 
three-toxin combination had antagonistic effects in 
mammalian kidney epithelial Vero cells. However, 
these mixtures exerted both synergism (BEA+T-2 and 
BEA+DON+T-2) and antagonism (DON+BEA and 
DON+T-2) in Chinese hamster ovary CHO-K1 cells, 
depending on the time of exposure. Dombrink-
Kurtzman (45) reported additive apoptotic effect of 
FB1+BEA on turkey peripheral blood lymphocytes. 
In other words, the same toxins interact differently in 
different cells.

Only a few studies addressed combined effects of 
Fusarium toxins in animals (46, 47). A combination 
of DON and MON as well as of FB1 and DAS or OTA 
exerted additive or less than additive toxicity. 
Similarly, Müller et al. (48) did not observe signifi cant 
interactions between low-dose FB1, DON, and T-2 
with OTA in weaning piglets. In contrast, chronic 
ingestion of single and combined FB1 and DON caused 
signifi cant morphological and immunological changes 
in the intestine of piglets studied by Bracarense et al. 
(49). Synergy was observed in the number of goblet 
cells and eosinophils in the ileum, additive interactions 
in the expression of IL-10, TNF-α, and adherent 
proteins, less-than-additive interactions in the 
expression of INF-γ and lesion scores, and antagonistic 
effects in goblet cells, plasma cells, eosinophils, and 
lymphocytes of the jejunum and in the expression of 
IL-1β and IL-6. This study suggests that ingestion of 
low doses of these toxins may predispose animals to 
infections by enteric pathogens through an interactive 
alteration of the intestine. The authors have based these 
conclusions on the statistical analysis of combined 
treatment versus control and single-toxin treatment, 
but their results have not been verifi ed by mathematical 
or statistical models that compare theoretical and 
measured effects of mycotoxin mixtures.

Mycotoxin interaction studies involving OTA

OTA is one of the most studied mycotoxins due 
to its presence in a variety of food commodities 
(maize, wheat, beans, grapes, and wine) as well as 
due to its implication in the development of EN in 
humans (50, 51). This mycotoxin is often found in 
food together with FBs, ZEA, or CTN (Table 1).

OTA and CTN were studied for nephrotoxicity 
separately and in combination. In combination, they 
were dominantly synergistic both in vivo and in 
vitro (see review 20). When CTN or patulin (PAT) 
were combined with OTA or OTB in porcine kidney 
LLC-PK1 cells, these binary mixtures always 
resulted in higher toxicity that was confi rmed as 
synergism by the full factorial analysis. The toxicity 
of these mixtures was not as pronounced in human 
proximal tubule-derived IHKE cells as in LLC-PK1 
cells (28, 52). In contrast, CTN had an antagonistic 
effect on OTA-induced caspase 3-activation in 
IHKE cells, which might be explained by a 
decreased uptake of OTA into the cells when both 
toxins were applied at the same time (32). 
Concurrent application of OTA and CTN in PK15 
cells resulted in apoptotic and necrotic synergism, 
while genotoxicity, determined by the micronucleus 
test, was either additive or antagonistic, depending 
on mycotoxin concentrations in the mixture. Co-
treatment of PK15 cells with calcium chelator 
BAPTA-AM plus OTA and/or CTN showed that 
calcium played a signifi cant role in both DNA 
damage and cell death (37). In green monkey kidney 
Vero cells a combination of OTA and CTN 
significantly increased cytotoxicity and DNA 
fragmentation while in mouse bone marrow cells, 
chromosome aberrations were observed. Compared 
to the effects of single toxins, the effect was 
synergistic (53). Genotoxic synergism was also 
observed in rats fed with OTA and CTN and in 
human kidney (HK2) cells (54, 55). In the kidneys 
of animals receiving both toxins, the amount of DNA-
OTA adducts (dG-OTA) increased ten times. In HK2 
cells it increased two times. Co-exposure to CTN and 
OTA signifi cantly increased cyclooxygenase (COX2) 
and lipooxygenase (LOX) expression, which 
corresponded to the increase in dG-OTA adduct 
formation. This study supports previous fi ndings that 
OTA-mediated DNA adducts are under the control of 
biotransformation enzymes such as CYP450 1B1, 
2C9, COX, and LOX (9, 50). Before these studies, it 
was believed that OTA poorly metabolised and did 
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not form reactive intermediates capable of interacting 
with DNA (50). However, mass spectrometry studies 
have shown that OTA-derived quinine/hydroquinone 
redox couple is involved in the generation of DNA 
adducts (56, 57). This genotoxic synergism might play 
a role in the development of EN and related chronic 
kidney diseases and carcinomas.

Beside the nephrotoxic potential, OTA in 
combination with CTN, PAT, and gliotoxin was also 
studied for immunotoxic effects in human peripheral 
blood mononuclear cells (29). The ray design showed 
that lower concentrations of these toxins in mixtures 
caused stronger inhibition of interferon-g release from 
T-cells and natural killer cells.

The last decade has seen intensive research of 
the combined effects of OTA and FB1 (33-36, 58-
65). In most cases, these toxins interacted in a 
synergistic or at least additive manner. Cytotoxic 
synergism was observed in rat brain glioma C6 
cells, human intestinal Caco-2 cells, and Vero cells. 
These cells were exposed to low FB1 and high OTA 
concentrations, which showed cytotoxicity above 
additive effects in respect to the individual toxins 
(58). Subcytotoxic concentrations of OTA and FB1 
or OTA and BEA in the mixture additively increased 
lipid peroxidation and decreased the level of 
glutathione in PK15 cells. At the same time, these 
mixtures synergistically induced caspase-3 (33, 34). 
All three mycotoxins applied at subcytotoxic 
concentrations induced DNA damage in PK15 cells 
(measured by the micronucelus and/or comet assay), 
and their combinations mostly produced an additive 
genotoxic effect (35, 36). The ionophoric activity of 
BEA is probably responsible for changes in membrane 
permeability, facilitating the penetration of FB1 and 
OTA into the cell. In a study by Domijan et al. (59) 
both the Fpg-modifi ed and standard alkaline comet 
assay showed that OTA+FB1 synergistically induced 
DNA damage in the kidneys of male Wistar rats, 
indicating that beside oxidative stress some other 
mechanism is also involved in their genotoxic effect. 
A recent study by Hadjeba-Medjdoub et al. (60) has 
shown that FB1 promotes OTA-specifi c DNA adducts, 
including C-C8dG OTA adduct and OTHQ-related 
adduct. These specifi c adducts are found in human 
urothelial tumours in the EN areas.

In pig studies (61-63), a mixture of OTA and FB1 
caused stronger lesions in the kidneys, more 
pronounced changes in biochemical parameters, and 
disturbances in humoral immune response in doses 
that corresponded to those found in cases of porcine 

nephropathy in Bulgaria and South Africa. These 
fi ndings suggested that mixtures of OTA and FB1 were 
involved in the aetiology of the disease.

Stoev et al. (64) found that beside FB1 and CTN, 
penicillic acid (PA) also co-occurred with OTA in 
swine feed. PA inhibited carboxypeptidase, the 
enzyme involved in detoxifi cation of OTA, which may 
have enhanced OTA toxicity. This and another study 
by the same authors (65) showed that a combination 
of OTA+PA produced synergistic toxicity, expressed 
as degenerative changes of internal organs in chickens 
and pigs. Experimental administration of these toxins 
provoked degeneration that corresponded to porcine 
nephropathy, which suggested that the disease may be 
owed to a combined action of two or more 
mycotoxins.

Mycotoxin interaction studies involving afl atoxins

Toxic properties of AFs have well been documented 
over the past fi ve decades in both in vivo and in vitro 
models (66-69). Of the major AFs (AFB1, AFB2, AFG1, 
AFG2), AFB1 is the most prevalent and most toxic. Its 
toxicity and carcinogenicity are linked to the metabolic 
conversion by the cytochrome p450 to a highly 
reactive AFB1-8,9-epoxide, which binds to the DNA, 
RNA, and proteins. AFB1 co-occurred with FB1 in a 
high-incidence area of human primary hepatocellular 
carcinoma in Haimen and Guangxi (Republic of 
China), suggesting that the mixture may be involved 
in the development of the disease (68, 69). This is why 
this combination has received the greatest attention 
over the last decade. Studies on growing barrows and 
turkey poults fed with this binary mixture resulted in 
additive to synergistic effects in the barrows and less-
than-additive to additive effects in the poults as 
compared to each mycotoxin alone (70, 71). Pozzi et 
al. (72) reported a synergistic effect on the reduction 
of body weight gain in male Wistar rats receiving oral 
AFB1 and FB1. Galderblom et al. (73) found that in 
the liver of male Fischer rats, FB1 exerted between 
200 and 400 times lower cancer initiating potential 
than AFB1. However, administration of FB1 three 
weeks after AFB1 resulted in a synergistic increase in 
hepatocyte nodules and foci. In contrast, Carlson et 
al. (74) reported no cancer-initiating properties of FB1 
in rainbow trout but enhanced tumour formation, 
which points to its cancer-promoting activity. 
Gelderblom et al. (75) have suggested that the 
inhibition of cell proliferation is an important 
mechanism for the cancer-promoting activity of FB1. 
These studies showed that AFB1 and FB1 interacted 
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synergistically in both cancer initiation and promotion, 
depending on intake conditions.

In a study by Theumer et al. (76), subchronic doses 
of the AFB1+FB1 mixture induced more pronounced 
apoptosis in the liver of male Wistar rats than either 
toxin alone. In addition, this combination provoked a 
signifi cant increase in Sa and Sa/So ratio in the kidney 
and liver compared to FB1 alone, indicating that AFB1 
enhanced FB1-induced impairments of sphingolipid 
metabolism. In another study by Theumer et al. (77) 
the toxins, applied alone or in combination, affected 
the immune response of rats differently. Spleen 
mononuclear cells (SMC) of rats fed with AFB1+FB1 
produced higher levels of IL-4 and lower levels of 
IL-10 compared to the SMC of animals fed with AFB1 
alone. This suggests that subchronic doses AFB1 and 
FB1 may produce an imbalance in TH1-TH2 cellular 
subpopulations. Furthermore, peritoneal macrophages 
in rats exposed to AFB1 alone released less H2O2 than 
in those exposed to a toxin mixture. The mechanism 
of these actions is still unknown. In yet another study, 
Theumer et al. (78) used the alkaline comet assay and 
the micronucleus test to measure DNA damage in 
SMC in Wistar rats exposed to subchronic doses of 
AFB1, FB1, and their mixture. All three induced a 
signifi cant damage. The parameters of oxidative stress 
(malondialdehyde, catalase, and superoxide dismutase) 
were also elevated, supporting the assumption that 
FB1 causes oxidative stress. DNA damage was more 
pronounced in animals fed with AFB1 or a mixture of 
AFB1 and FB1 than in rats exposed to FB1 alone, 
indicating that the DNA lesions were produced mainly 
by AFB1.

In a study by McKean et al. (39), a combination 
of AFB1 at the ¾ LD50 and FB1 at a dose that did not 
provoke acute toxicity resulted in 100 % mortality in 
F-344 rats, which could be considered a synergistic 
effect. Using an interactive index the authors confi rmed 
that the toxic effect was at the margin of synergism. 
Mosquitofi sh (Gambusia affi nis) and human bronchial 
epithelial BEAS-2B cells showed similar fi ndings, 
while in HepG2 cells this binary mixture produced 
antagonistic effect. In another study (79), McKean et 
al. used the same experimental and mathematical 
model to establish the combined toxicity of AFB1 and 
T-2. The two toxins interacted mostly in an additive 
manner, while a synergistic interaction was noted in 
BEAS-2B cells.

In chicks fed with a mixture of AFB1 and OTA, 
Huff et al. (38) established a synergistic effect on 
growth inhibition and mortality. The primary effect of 

this interaction was nephrotoxicity but not 
hepatotoxicity. Recently, this combination was tested 
in cultured monkey kidney Vero cells (94). It 
signifi cantly decreased cell viability, increased DNA 
fragmentation and p53 activation, and decreased the 
expression of the anti-apoptotic factor bcl-2. The 
interaction between these toxins was additive.

CONCLUSIONS

Through food humans and animals are constantly 
exposed to combinations of mycotoxins in a variety 
of concentrations. Current climate changes have 
infl uenced the distribution of mycotoxin producers 
and consequently the presence of particular mycotoxins 
as food contaminants (e.g. AFs). Exposure to high 
mycotoxin concentrations often provokes acute 
symptoms, which are seldom recognised as 
mycotoxicoses. Chronic intake of sub-toxic mycotoxin 
concentrations might alter various events at the 
cellular level,  leading to biochemical and 
immunological impairments and possibly cancer. The 
relationship between chronic conditions and exposure 
to mycotoxins is even more diffi cult to recognise. In 
general, most of the mycotoxin mixture studies have 
observed additive or synergistic interactions, calling 
our attention to the signifi cant threat to human and 
animal health. One of the preventive measures should 
be to revise current legislation on exposure limits, 
taking into account these new data. Future research 
may expand to include other relevant mycotoxins or 
combinations.
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Sažetak

ŠTETNI UČINCI KOMBINIRANIH MIKOTOKSINA

U članku je prikazan pregled mikotoksinske kokontaminacije hrane u Hrvatskoj i susjednim zemljama 
te njihovih kombiniranih toksičnih učinaka na različitim eksperimentalnim modelima. Pritom su 
obuhvaćene studije interakcija koje uključuju fuzarijske mikotoksine, okratoksin A (OTA) i afl atoksin 
B1 (AFB1). Nekoliko je takvih istraživanja napravljeno na temelju matematičko-statističkog modela, 
dok je većina studija primijenila jednostavnu statističku analizu koja omogućava usporedbu učinaka 
kombiniranih mikotoksina u odnosu na učinke pojedinačnih. Općenito, većina dosadašnjih studija 
pokazuje da kombinacije mikotoksina u biološkom sustavu imaju sinergistički ili barem aditivni 
učinak, što znači da su velik rizik za zdravlje ljudi i životinja.

KLJUČNE RIJEČI: afl atoksin, citrinin, fumonizini, interakcije mikotoksina, okratoksin, trihoteceni, 
zearalenon
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