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Ferroptosis: regulated cell death
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Ferroptosis is a recently identified form of regulated cell death that differs from other known forms of cell death 
morphologically, biochemically, and genetically. The main properties of ferroptosis are free redox-active iron and 
consequent iron-dependent peroxidation of polyunsaturated fatty acids in cell membrane phospholipids, which results in 
the accumulation of lipid-based reactive oxygen species due to loss of glutathione peroxidase 4 activity. Ferroptosis has 
increasingly been associated with neurodegenerative diseases, carcinogenesis, stroke, intracerebral haemorrhage, traumatic 
brain injury, and ischemia-reperfusion injury. It has also shown a significant therapeutic potential in the treatment of 
cancer and other diseases. This review summarises current knowledge about and the mechanisms that regulate ferroptosis.
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According to the Nomenclature Committee on Cell 
Death (NCCD), there are two main types of cell death, 
depending on molecular events or biochemical mechanisms 
that have led to it (1): a) accidental cell death (ACD) and 
b) regulated cell death (RCD). The first type is the 
consequence of unexpected chemical, mechanical, and 
physical stress (e.g. heat-shock, freeze-thawing) that 
overcomes the existing control mechanisms. It is 
characterised by distinct morphological features, impaired 
membrane permeability, organelle dilatation, dissociation 
of ribosomes, and release of damage-associated molecular 
patterns (DAMPs) and is insensitive to pharmacological or 
genetic interventions (death by so-called “sabotage” 
programme). The RCD type is regulated by precise 
molecular mechanisms (death by so-called “suicide 
programme”) (2, 3). NCCD also defines the term 
programmed cell death (PCD) as a subset of RCD. This is 
a physiological form of cell death at the genetic and 
biochemical level first proposed in 1972 (4, 5) and is 
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essential for the development of living organisms and 
maintenance of homeostasis.

RCD is often synonymous with caspase-dependent 
apoptosis (apoptotic cell death), but there are many non-
apoptotic forms of RCD such as necroptosis, pyroptosis, 
ferroptosis, parthanatos, autophagy-dependent cell death, 
alkaliptosis, and oxytosis (6). These differ from one another 
in biochemical, functional, and morphological terms (7). 
Table 1 lists major RCD forms, but there are others, such 
as cellular senescence (irreversible inhibition of the cell 
cycle) (1, 12), alkaliptosis (cell death triggered by 
intracellular alkalinisation) (6), lysosome-dependent cell 
death (mediated by hydrolytic enzymes released into the 
cytosol after lysosomal membrane permeabilisation) (6, 
13), entotic cell death (a form of cell cannibalism in which 
one cell devours and kills another and occurs mostly in 
epithelial tumour cells) (14), and netotic cell death 
[mediated by the release of neutrophil extracellular traps 
(NETs) – extracellular net-like DNA-protein structures 
released by cells in response to infection or injury] (15).

Cell death can generally result in immune response to 
dead cell antigens, commonly known as “immunogenic cell 
death” (16). An important role is attributed to the release 
of DAMPs, which include high-mobility group box 1 
(HMGB1) proteins, histones, mitochondrial transcription 
factor A (TFAM), and non-proteaceous entities such as 
DNA, RNA, and extracellular ATP (17) from dead or dying 
cells. Cellular programmes associated with the immune 
component are apoptosis, necroptosis, ferroptosis, 
pyroptosis, and parthanatos (9).

Necrosis, as a form of ACD, is characterised by a rupture 
of the plasma membrane, cell swelling (oncosis), a decrease 
in energy and release of DAMP, which leads to cell lysis 
and consequent propagation of inflammation (6, 9). A 
variant of necrosis has also been described to involve 
mitochondrial permeability transition, pore opening 
characterised by plasma membrane rupture, cell swelling 
and lysis, energy decline, DAMP release, and mitochondrial 
swelling (9).

The nature, regulation, and physiological and 
pathological relevance of various cell death programmes 
continues to be at the centre of research interest. For the 
last few decades, scientific interest has particularly been 
focused on the features and molecular mechanisms of 
ferroptosis, which seems to be involved in both health and 
disease states (3). The aim of this review is to present the 
latest insights into this form of cell death, including its main 
mechanisms of action and possibilities of manipulation.

The data selected for this review were collected by 
searching the PubMed database for articles published in 
English between 2000 and 2020 using the following terms: 
cell death, regulated cell death, ferroptosis, lipid peroxides, 
iron, and glutathione peroxidase. In addition, we ran a 
search for possible mechanisms and physiological and 
pathophysiological significances using the following 

specific terms: programmed cell death, labile iron pool, 
apoptosis, and erastin.

THE CONCEPT

As a new form of cell death, ferroptosis (from Latin 
ferrum for iron and Greek ptosis for decline/failure) was 
first described in 2012 (18), although some characteristic 
changes had been known earlier (19). It is an iron-dependent 
form of RCD or non-apoptotic, caspase-independent cell 
death with necrotic morphology caused by lipid reactive 
oxygen species (L-ROS; or lipid peroxides) accumulated 
in cell membranes through iron-mediated lipid peroxidation. 
It is an adaptive form of RCD, which means that it depends 
on metabolic conditions in the cell (20). It is also considered 
a pro-inflammatory, immunogenic form of RCD, since 
DAMPs are released during this process (21). According 
to its genetic, morphological, and biochemical characteristics, 
this process significantly differs from other forms of RCD. 
For example, ferroptotic cells have smaller mitochondria, 
higher mitochondrial membrane density, negligible 
mitochondrial crystals, and mitochondrial membrane 
rupture (Table 1). Some studies suggest that ferroptosis still 
shares several biochemical features with oxytosis (22), 
necroptosis (23), and autophagy or ferritinophagy (24, 25). 
This indicates some interdependence between these cell 
death programmes, but further research is needed in this 
regard.

The mechanism of ferroptosis that was discovered the 
first by in vitro studies (18, 20) was the one with erastin, a 
small molecule that inhibited the cystine/glutamate 
antiporter system Xc-. This depleted cysteine required for 
the synthesis of antioxidant glutathione (GSH), a cofactor 
of the glutathione peroxidase-4 enzyme (GPX4; also known 
as phospholipid hydroperoxide glutathione peroxidase, 
PHGPx), which protects cells from L-ROS accumulation 
by reducing polyunsaturated fatty acids containing 
phospholipid hydroperoxides (PL-PUFA(PE)-OOHs (or 
lipid-hydroperoxides, L-OOHs) to the corresponding lipid 
alcohols and by limiting further formation of highly reactive 
alkoxyl radicals (L-OO*). The result of reduced GPX4 
activity is the accumulation of toxic levels of PL-
PUFA(PE)-OOH within the cell (18, 20). Figure 1 
summarises the main pathways of ferroptosis.

According to literature, lipid peroxidation, which is a 
key factor in ferroptosis, involves various cell organelles, 
plasma membranes, endoplasmic reticulum, lysosomes, and 
mitochondrial membranes (26, 27), but opinions differ (18, 
28). The susceptibility of individual cell organelles to lipid 
peroxidation is generally considered to depend on the “pool” 
of lipids in each organelle, iron storage, GSH level, and 
lipoxygenase (LOX) expression, which differs between cell 
types. Lipid peroxidation requires certain polyunsaturated 
fatty acids (PUFAs) in phospholipids (PL), whose 
production is related to iron metabolism and other factors. 
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In other words, cell susceptibility to ferroptosis correlates 
with the abundance of PL acetylated with PUFA-PLs that 
can easily oxidise, the presence of free, redox-active iron, 
and inefficient removal of PL-PUFA(PE)-OOH (defective 
GSH-GPX4 system). In broader terms, ferroptosis is 
associated with iron, lipid metabolism, and some amino 
acids (18, 29, 30), which explains relatively large 
differences in susceptibility to ferroptosis between different 
cell types. Susceptibility to ferroptosis could therefore be 
altered by the expression and activity of proteins and 
pathways controlling the levels, transport, storage, and 
metabolism of iron, PUFAs, cystine, cysteine, GSH, 
glutamine, and selenocysteine (20).

MAJOR PATHWAYS REGULATING 
FERROPTOSIS

Iron-dependent lipid peroxidation is considered to be 
the key to ferroptosis (31). However, this process can also 
be triggered by physiological conditions such as high 
extracellular glutamate, small molecules that block cystine 
import into the cell by the antiporter system Xc-, molecules 
that initiate degradation or covalently inhibit GPX4, and 
genetic deletion of GPX4 (18, 32, 33).

The following is a concise description of the major 
pathways of ferroptosis: GPX4 inactivation, L-ROS 
accumulation, and presence of redox active iron.

Inactivation of GPX4

GPX4 activity may be lowered by direct enzyme 
inhibition (loss of activity or stimulation of enzyme protein 
degradation) or inhibition of the antiporter system Xc-. In 
the first case, inhibition is most often mediated by RAS-
synthetic lethal 3 (RSL3), an alkylating molecule that 
irreversibly binds to selenocysteine in the active site of 
GPX4 (30), but there are other inducers of ferroptosis that 
can deplete or degrade the enzyme protein, such as 
ferroptosis inducer 56 (FIN56) and caspase independent 
lethal 56 (CIL56), a molecule that causes non-apoptotic cell 
death through an acetyl-CoA-carboxylase-1-dependent 
process (20, 34). Ferroptotic cell death can also be induced 
through genetic inhibition of GPX4 by siRNA (35).

As for the other pathway – the inhibition of system 
Xc- – here is how this membrane-based, sodium-independent 
and chloride-dependent cystine/glutamate antiporter system 
works: it imports extracellular cystine in exchange for 
intracellular glutamate (36) and through the catalytic action 
of cystine reductase transforms cystine into cysteine, which 
is required for the synthesis of GSH and subsequently 
GPX4. Under normal conditions GPX4 catalyses the 
reduction of PL-PUFA(PE)-OOHs into alcohols (37). When 
this system is inhibited by small molecules such as erastin 
and its analogues (piperazine erastin and imidazole ketone 
erastin) and/or sorafenib, GSH levels drop, GPX4 is 
inactivated, and L-ROS starts to accumulate (18, 30).

Accumulation of L-ROS

Aerobic organisms are continuously exposed to various 
reactive oxygen species (ROS) such as superoxide radicals 
(*O2

-), hydrogen peroxide (H2O2), hydroxyl radical (*OH), 
and lipid peroxides (L-ROS) such as L-OOH, peroxyl  
(L-OO*), and L-O* radicals (38). While low, controlled 
L-ROS levels are acceptable for normal cell and organism 
functions, higher levels are associated with numerous 
chronic degenerative processes and acute organ injuries. 
These conditions are the result of an oxidant-antioxidant 
imbalance that results in oxidative stress.

The formation of cellular L-ROS involves iron-
catalysed spontaneous chain reaction generating toxic 
radicals (non-enzymatic process) (20, 39) and enzyme-
mediated oxidation of PUFAs (40, 41). Lipid compounds 
that are the most sensitive to lipid peroxidation and are thus 
involved in triggering ferroptosis are PL-PUFAs, arachidonic 
acid (AA) in particular, and the elongation product of 
adrenic acid (AdA) (29).

The formation of PL-PUFAs is mediated by the acyl-
CoA long chain synthetase 4 (ACSL4), which catalyses the 
formation of acyl CoA derivatives (AA-CoA and AdA-
CoA). Another enzyme, lysophosphatidylcholine 
acyltransferase 3 (LPCAT3), esterifies these derivatives into 
phosphatidylethanolamine (PE) forms AA-PE and AdA-PE 
that are inserted into the PL membrane. The resulting PL-
PUFA(PE) produces L-ROS, which in turn executes 
ferroptosis (7).

PL-PUFA(PE) oxidation takes place in stages. In the 
first stage, *OH radicals attack PUFA on the bis-allylic 
position to create carbon-centred radicals that can react with 
molecular oxygen and produce L-OO*. In the second stage, 
L-OO* propagates by abstracting hydrogen from another 
PL molecule, which leads to the formation of PL-
PUFA(PE)-OOH. L-OO* may also be added to the bis-
allylic position of another PL molecule and produce a 
PL-OO-PL dimer. In the third stage, the reaction is 
continued until two radicals come together and form a non-
radical molecule or the chain reaction is interrupted by some 
lipophilic antioxidant. If weakly bound or if free iron (Fe2+, 
Fe3+) is present (42, 43), PL-PUFA(PE)-OOHs can undergo 
reductive cleavage producing a toxic lipid LO* radical. 
These lipid radicals can abstract protons from neighbouring 
PUFAs and start a new cycle of lipid oxidation and damage 
(44). In addition, secondary lipid peroxidation products can 
be generated by intramolecular rearrangement and cleavage 
of PL-PUFA(PE)-OOH such as malondialdehyde (MDA), 
4-hydroxynonenal (4HNE), and oxygenated PLs (33).

Enzyme-mediated formation of PL-PUFA(PE)-OOH 
(35) involves lipid-peroxidising enzymes that contain 
mononuclear iron centres and can easily receive iron from 
poly-rC binding chaperone proteins (PCBPs). Their major 
substrates are AA and linoleic acid. The enzymes are 
classified according to their positional specificity for AA 
oxygenation to 5-, 8-, 12-, 15-LOX. They catalyse the 
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introduction of molecular oxygen into PUFAs to produce 
metabolites of 15-hydroxyeicosatetraenoic acid and 
13-hydroxyoctadecadienoic acid (45, 46). The contribution 
of enzymatically and non-enzymatically mediated lipid 
peroxidation to ferroptosis differs (41, 47).

If the resulting L-ROS forms are not successfully 
detoxified by GPX4, they accumulate in cell and organelle 
membranes, which results in ferroptosis and membrane 
disruption. Although the exact mechanism is not clear, it is 
assumed that “hydrophilic pores” formed on membranes 
change membrane permeability and lay grounds for the 
“osmotic catastrophe” (48). Another assumption is that the 
resulting secondary, lipophilic electrophiles (e.g. MDA) 
may act as downstream signalling molecules and undetected 
protein effectors (49, 50).

Presence of redox-active iron

Current knowledge indicates that LOX enzymes and 
the non-enzymatic Fenton reaction contribute the most to 

lipid peroxidation and L-ROS accumulation in ferroptosis 
(51, 52). The Fenton reaction involves oxidation of the 
ferrous to ferric form of iron and electron transfer to H2O2 
(Fe2++H2O2→Fe3++*OH+HO-) producing a very reactive 
*OH radical (ferric iron from the reaction can be reduced 
to ferrous iron in the presence of O*2

- in the Haber-Weiss 
reaction).

Iron is an essential transition metal for all life forms on 
Earth. It is necessary for erythrocytopoiesis, for numerous 
enzymes involved in DNA replication, translation, and 
repair, for antimicrobial oxidative burst, and for many other 
biological processes, most often in the form of Fe-S-clusters 
(53). Thanks to its property to reversibly lose or receive 
electrons and transit from one valence state to another, it 
catalyses various biochemical reactions. The presence of 
free intracellular iron can therefore strongly influence 
cellular redox status and contribute to oxidative stress in 
cells. At the cellular level, iron homeostasis is regulated by 
a post-transcriptional mechanism mediated by the iron 

Figure 1 Proposed cellular mechanisms of ferroptosis. Ferroptosis occurs when the reduction of PL-PUFA (PE)-OOH via GPX4 is 
insufficient to prevent iron-mediated L-ROS accumulation. An important cysteine supply route for GSH synthesis is the import of 
cystine via the antiporter system Xc- (1). An additional or alternative cysteine route is transsulphuration (1a). GSSG is reversed into 
GSH with the catalytic action of NADPH-dependent GR (2) generated in the penthose phosphate patway (2a). GSH is a cofactor of 
the GPX4 enzyme that prevents the accumulation of PL-PUFA(PE)-OOH by converting them to PL-PUFA(PE)-OH (3), and in the 
process of GPX4 maturation participates IPP from the mevalonate pathway (3a). Free redox active iron is involved in the formation 
of L-ROS from membrane PL-PUFA(PE) through the Fenton reaction and oxidation by15-LOX-1 (4). ACSL4 and LPCAT3 enzymes 
are involved in the formation of PL-PUFA (PE) (4a). AA – arachidonic acid; ACSL4 – acyl-CoA synthetase long chain family member 
4; AdA – adrenic acid; GPX4 – glutathione peroxidase; GR – glutathione reductase; GSH – glutathione reduced form; GSSG – glutathione 
disulfide; IPP – isopentenyl pyrophosphate; LIP – labile iron pool; 15-LOX-1 – 15-lipooxygenase-1; LPCAT3-- lysophosphatidylcholine 
acyltransferase; L-ROS – lipid reactive oxygen species;PE – phosphatidylethanolamine; NADP – nicotinamide adenine dinucleotide 
phosphate; NADPH – reduced nicotinamide adenine dinucleotide phosphate; PL-PUFA(PE)-OH – lipid alcohol; PL-PUFA(PE)-OOH 
– PUFA-containing phospholipid hydroperoxides; PL-PUFA(PE) – PUFA-containing phospholipids; PUFA – polyunsaturated fatty 
acid; Se – selenocysteine
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responsive protein/iron responsive element (IRP-IRE) 
system, while at the systemic level (absorption, utilisation, 
storage, and recycling) it is regulated by the hepcidin-
ferroportin feedback loop and numerous other proteins such 
as divalent metal transporter (DMT1), ferrireductase, haem-
oxygenase-1 (HMOX-1), ferroportin, transferrin (Tf), 
transferrin receptor-1 (TfR1), mitoferrin 1, and frataxin 
(54–56).

Under normal conditions, iron is delivered to the cell 
by Tf and TfR1.There ferric iron is reduced to its ferrous 
form, which is then introduced into the cytosol by DMT1. 
If there is excess free, non-transferrin-bound iron (NTBI), 
it is imported by transmembrane transporter proteins ZIP8 
and ZIP14 (57). Within the cells, iron binds to multifunctional 
PCBPs, which prevent iron from becoming part of the 
redox-active intracellular “labile iron pool” (LIP) and 
eventually its cytotoxic effects (57). In erythroid cells, most 
of the iron from LIP is transported into mitochondria by 
mitoferrin 1 and 2 and is stored as mitoferritin or 
incorporated into haem and Fe-S clusters, required for all 
electron transport chain complexes (57). In non-erythroid 
cells, iron from the LIP or the one bound to PCBPs is stored 
in the form of ferritin. When the stored iron is mobilised, 
ferritin binds to the autophagic nuclear receptor coactivator 
4 (NCOA4). NCOA4 transports it to lysosomes, where it 
is degraded and released in a process called ferritinophagy 
(25). Ferritinophagy plays a major role in the recycling of 
intracellular redox-active iron, which also emphasizes the 
importance of lysosomes for ferroptosis (25). The resulting 
radicals and lipid peroxidation end products are highly 
reactive and cause massive oxidative damage, which is not 
exactly consistent with the regulated nature of ferroptosis.

Iron-dependent oxidative metabolism has been an 
indispensable part of life for billions of years. In view of 
this well-known fact, it was interesting to see that one 
research from 2010 (57), that is, before ferroptosis was 
recognised as a process, associated it with cell death. 
Degenerative changes in many diseases have been found 
to coincide with dysregulation of iron metabolism (57). 
Further research will show how consistent these findings 
are with the demonstrated mechanisms of cell death by 
ferroptosis in vivo and whether ferroptosis is the oldest and 
in many contexts the most important form of RCD.

For now, it can be concluded that lipid peroxidation 
mediated by free redox active iron plays a central role in 
ferroptosis (18). However, the precise role of iron in this 
process is yet to be determined. What we know is that iron 
catalyses the formation of L-ROS through the Fenton 
reaction and/or by iron-dependent LOX (58). The second 
assumption involves iron-independent redox activity, which 
needs further investigation (33, 59).

OTHER BIOCHEMICAL PROCESSES 
ASSOCIATED WITH FERROPTOSIS

In addition to iron, lipid peroxidation, and GPX4, other 
biochemical pathways are also essential for ferroptosis. One 
of them is the pentose phosphate pathway, which produces 
nicotinamide adenine dinucleotide phosphate (NADPH). 
NADPH is necessary for the catalytic activity of glutathione 
reductase, an enzyme that catalyses the conversion of GSSG 
to GSH. Another pathway is transsulphuration, which 
allows cysteine synthesis de novo in case of deficient 
extracellular cystine uptake by the glutamate/cysteine 
antiporter Xc-system (60). Lipid metabolism and the 
mevalonate pathway are also associated with the ferroptosis. 
In addition to ferroptosis inducers, ferroptosis inhibitors 
deserve particular attention. They can be classified as iron 
chelators (e.g. deferoxamine, cyclipirox, deferiprone), 
lipophilic antioxidants (vitamin E, butylated hydroxytoluene, 
XJB-5-131, liproxstatin-1, ferrostatin-1), LOX inhibitors 
(baicalein, zileuton), and deuterated polyunsaturated fatty 
acids, all of which prevent lipid peroxidation. Literature 
also mentions glutaminolysis inhibitors, protein synthesis 
inhibi tor  cycloheximide (which reduces beta-
mercaptoethanol), and neurotransmitter dopamine (20). 
Some of these inducers and inhibitors of ferroptosis are also 
suitable for use in vivo (e.g. sorafenib and iron chelators).

Possible physiological and pathological roles of 
ferroptosis

Little is known about the role of ferroptosis in the 
development of tissues and organs. Studies have shown that 
L-ROS levels are increased in embryonic tissues undergoing 
cell death and that the process can be controlled with GPX4 
and lipophilic antioxidants (19, 61). This suggests that 
ferroptosis is important for maintaining tissue integrity and 
general homeostasis, although its precise developmental 
role is still unclear.

Impaired ferroptosis is associated with various 
pathological  condit ions such as malignancies, 
neurodegenerative diseases, ischaemia/reperfusion, acute 
kidney disease, liver and heart diseases, haemochromatosis, 
(62, 63), and neuropsychiatric illnesses (such as bipolar 
disorders, depression, schizophrenia, and Huntington’s 
disease) (64, 65). Many of these conditions are also 
accompanied by iron, glutamate, or GSH imbalance and 
increased lipid peroxidation (66).

In vitro and animal studies investigating the role of 
ferroptosis in tumourigenesis indicate that cancer cell lines 
derived from the brain, ovary, kidney, bone tissue, and soft 
tissue are susceptible to ferroptosis, whereas the lines 
derived from the pancreas, breast, stomach, and upper 
respiratory system are not (30, 67). These differences in 
sensitivity to ferroptosis have been attributed to differences 
in the basal metabolic state of these particular cell types, 
especially in lipid metabolism. Ferroptosis in cancer cells 
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seems to be promoted by tumour suppressor gene p53, 
NADPH-oxidase (NOX), HMOX-1 and inhibited by miR-
137 and transcriptional factors Nrf2 and p53 (10, 68).

Either way, they directly or indirectly target iron 
metabolism or lipid peroxidation and show a potential for 
genetic or pharmacological interventions utilising 
ferroptosis to eliminate malignant cells and treat different 
types of cancer. However, it has yet to be established in 
which cancer types ferroptotic therapy would be effective.

Malignant cells usually have high concentrations of iron 
and are consequently in persistent oxidative stress (69). 
This is why some cancers contain somatic mutations in the 
Nrf2/Keap 1 pathway to enhance transcription of antioxidant 
enzymes (19, 70, 71). As a consequence, ferroptosis is not 
frequent in the development of cancers. To stimulate 
ferroptosis as a therapeutic strategy against cancer, the most 
common therapeutic targets are the system Xc-, GPX4, 
iron-related genes, GSH, coenzyme Q10 (CoQ10), and 
LOXs (67). Tumour suppressor gene p53 (more specifically, 
acetylation-defective mutant p533KR) is also known to induce 
ferroptosis (19) by suppressing the antiporter system Xc- 

component SLC7A11. However, the roles of wild and 
mutant p53 in ferroptosis appear to be extremely complex. 
Depending on the context, different cells and different test 
conditions can stimulate or suppress ferroptosis by different 
mechanisms (72–75). These studies are ongoing.

Therapeutic role of ferroptosis

The mechanisms controlling ferroptosis have also been 
studied as therapeutic targets in various pathological 
conditions. For ferroptosis-based cancer therapy, iron-based 
nanomaterials have been designed and synthesised in recent 
times, such as ferumoxytol (otherwise approved by the 
United States Food and Drug Administration for iron 
deficiency therapy) and amorphous iron nanoparticles. Due 
to certain disadvantages of iron-based nanomaterials, other 
metals with multiple oxidation states (e.g. manganese 
dioxide-coated mesoporous silica nanoparticles) and GPX4-
inhibiting nanomaterials (e.g. metal-organic network coated 
on the surface of polyethylenimine/p53 plasmid complex) 
are also being tested (74).

Chemotherapeutics (e.g. doxorubicin/adriamycin, 
cytarabine/ara-C, cisplatin) in combination with erastin 
show a significantly synergistic antitumor activity (75). 
Other drugs with the ability to stimulate ferroptosis, such 
as sulfasalazine, cisplatin, artesunate, sorafenib, lapatinib, 
salinomycin, and ironomycin are still being tested on cell 
lines of various cancers (10).

The role of ferroptosis in the treatment of cancer, 
however, is not yet sufficiently clear. According to Krysko 
et al. (76), tumour cell death by ferroptosis is a “double-
edged sword”. Namely, ferroptotic cells can activate 
antitumour immune response through immunogenic cell 
death and thus enhance the effects of anticancer therapy. 
However, they can also suppress antitumor immune 

response and contribute to tumour progression. At this 
stage, no definitive conclusions can be drawn as to whether 
ferroptosis is an immunogenic or immunosuppressive form 
of cell death. This is why some authors call for further 
basic research on animal models (77).

Need for ferroptosis biomarkers

To confirm the findings of ferroptosis studies, those in 
vivo in particular, it is necessary to define reliable molecular 
biomarkers of this process. Studies conducted so far are 
mainly based on the use of different inducers and on 
monitoring the effects of ferroptosis inhibitors and increased 
L-ROS values (19). A reliable and specific biomarker has 
not yet been defined. Candidates include increased 
expression of prostaglandin E synthase mRNA 2 (PTGS2), 
glutathione-specific gamma-glutamylcyclotransferase 1, 
and HMOX1, which have been reported following erastin-
induced ferroptosis (30, 78). Other potential ferroptosis 
biomarkers could be higher activity of cyclooxygenase 2 
(30, 31), higher MDA, and lower NADPH levels (79–81). 
Various methodological approaches have been used in vitro 
to determine cell viability, most commonly flow cytometry 
(30, 82), followed by the measurement of intracellular iron 
using a specific dye and GSH depletion (83).

CONCLUSION

The main feature of ferroptosis is the accumulation of 
L-ROS in the cell membrane and organelles through iron-
dependent lipid peroxidation and inadequate activity of 
GPX4.There are indications that this form of cell death is 
relevant in a variety of physiological and pathophysiological 
contexts and that it could be used to target some cancers.

However, current knowledge is still insufficient and 
does not answer what role ferroptosis has in the normal 
development of the organism, how ferroptosis signalling 
pathways are controlled, what role does iron play, what 
actually happens to cell membranes after L-ROS 
accumulation, is LOX essential for the process, does 
ferroptosis include other enzymes to which iron is a 
cofactor, and what role the secondary products of lipid 
peroxidation play.

So far, the most useful information regarding ferroptosis 
originates from in vitro studies that elucidate additional 
molecular mechanisms and signalling pathways involved 
in ferroptosis. Further studies are needed to clarify the 
remaining uncertainties and help transfer new knowledge 
to clinical settings.

Furthermore, to understand ferroptosis in in vivo 
conditions we need more specific and reliable biomarkers 
under normal or pathological conditions. This would help 
us to predict the susceptibility or resistance of certain 
diseases to ferroptosis and learn how to modulate this 
process to establish effective therapeutic strategies.
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Feroptoza: regulirana stanična smrt

Feroptoza je nedavno identificirani oblik regulirane stanične smrti koji se od ostalih poznatih oblika stanične smrti razlikuje 
morfološki, biokemijski i genetski. Glavna svojstva feroptoze uključuju slobodno redoks aktivno željezo i posljedičnu, 
o željezu ovisnu, peroksidaciju polinezasićenih masnih kiselina u fosfolipidima staničnih membrana te gubitak aktivnosti 
glutation peroksidaze 4, što rezultira akumulacijom lipidnih, reaktivnih kisikovih spojeva. Feroptoza se sve više povezuje 
s raznim bolestima kao što su neurodegenerativne bolesti, karcinom, moždani udar, intracerebralna krvarenja, traumatične 
ozljede mozga i ishemijsko-reperfuzijska ozljeda. Također je pokazan značajan terapijski potencijal u liječenju raka i 
drugih bolesti. Ovaj pregled sažima trenutačne spoznaje i mehanizme koji reguliraju feroptozu.

KLJUČNE RIJEČI: glutation peroksidaza 4; lipidna peroksidacija; reaktivne kisikove vrste, sustav Xc-; željezo


