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I have shown that by averaging antioxidant activity (AA) values measured by different methods it is possible to obtain 
an excellent correlation (R2=0.960) between the first electrochemical oxidation potential, Ep1, and AA. Separate correlations 
using the AA values obtained with each of the four methods [R2 were 0.561 for diphenyl-1-picrylhydrazyl (DPPH), 0.849 
for Folin Ciocalteu reagent (FCR), 0.848 for the ferric-reducing ability of plasma (FRAP), and 0.668 for the Trolox 
equivalent antioxidant capacity (TEAC)] were all worse, and in some cases not useful at all, such as the one for DPPH. 
Also, the sum of atomic orbital spin populations on the carbon atoms in the skeleton of radicals (

s(C)
Σ AOSPRad), calculated 

with the semi-empirical parameterisation method 6 (PM6) in water, was used to correlate both Ep1 and AA, yielding 
R2=0.926 and 0.950, respectively. This showed to be a much better variable for the estimation of Ep1 and AA than the 
bond dissociation energy (BDE), R2=0.854 and 0.901 for Ep1 and AA, respectively, and especially the ionisation potential 
(IP), R2=0.445 and 0.435 for Ep1 and AA, respectively.
KEY WORDS: DFT; oxidation potential; PM6; polyphenols; radical scavenging

Antioxidant activity (AA) of flavonoids, a large group 
of polyphenolic secondary plant metabolites, has been 
exhaustively studied over the past few decades. Since the 
French paradox (1), vast amounts of studies were published 
on their protective effect regarding many diseases caused 
by oxidative stress such as neurodegenerative diseases (2), 
diabetes (3), cardiovascular diseases (4), cancer (5), and 
allergies (6). Recent research has also revealed other modes 
of flavonoid action (7, 8), but their protective effect has 
mostly been associated with direct radical (oxygen and 
nitrogen species) scavenging ability stemming from the 
ability of the resulting phenoxyl radicals to remain stable. 
This stability depends on the number and spatial relations 
between phenolic hydroxyl groups in the molecule, i.e. their 
electronic structure (9–18).

Several authors have suggested that AA should correlate 
with the first electrochemical oxidation potential (Ep1) (9, 
10, 19, 20), but Tabart et al. (21) were the first to propose 
averaging of AA values obtained by different methods 
(whose different mechanisms may yield different results) 
to make correlations informative.

Zhang et al. (22) measured AAs for a set of 14 flavonoids 
using four methods: diphenyl-1-picrylhydrazyl (DPPH), 
Folin Ciocalteu reagent (FCR), ferric reducing ability of 
plasma (FRAP), and Trolox equivalent antioxidant capacity 
(TEAC). To show how good the correlation between 
flavonoid Ep1 and AA actually is, I took their measurements 

(Table 1). I also wanted to check the correlation between 
flavonoid AAs and atomic orbital spin populations over the 
skeleton atoms of a radical molecule (

s(C)
Σ AOSPRad), as 

s(C)
Σ

AOSPRad showed excellent correlation with Ep1 (15). For 
that purpose I performed PM6 calculations in water to 
optimise the geometries of the 14 flavonoids and their 
cations and radicals.

THEORETICAL METHODS

MOPAC calculations

The geometries of the 14 flavonoids and their cations 
and radicals in water were optimised using the 
MOPAC2016™ PM6 method (23). All of the initial 
structures were taken as planar. The eigenvector following 
(EF) optimisation procedure was carried out with a final 
gradient norm under 0.01 kcal/mol/Å. This approach was 
used for all of the studied structures.

Regression calculations

Regression calculations, including the leave-one-out 
procedure (LOO) of cross validation were calculated with 
the CROMRsel program (24). The standard error of the 
cross-validation estimate was defined as:

2

cvSE  = i

i

X
N

∆∑    (1)

where ΔX and N denote cv residuals and the number of 
reference points, respectively.
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RESULTS AND DISCUSSION

As concluded by Zhang et al. (22), the methods for 
measuring AA are inconsistent and, their mutual correlations 
vary from r=0.694 to 0.941 for the given set of flavonoids 
(Table 2). Also, linear correlation between Ep1 and AAs 
yielded correlation coefficients from r=0.749 (DPPH vs. 
Ep1) and 0.818 (TEAC vs. Ep1) to 0.921 (FCR or FRAP vs. 
Ep1).

I therefore tried averaging antioxidant activity values 
(21) using a somewhat different averaging method and 
expressed the AA values for every method by their relative 
values in the range from 0 to 1 with the formula:

min

max

AA AA
 = 

AA AA
relative AA i

i

−
−

 (2)

where AAi is the AA value of flavonoid i, and AAmax 
and AAmin are the maximal and minimal AA values obtained 
by the method. Then I calculated the relative mean of the 
AA value for every flavonoid using relative values of the 
four methods (Table 1). For illustration, quercetin had a 
relative AA mean value equal to 1 because its AA was the 
highest by all four methods.

Figure 1 clearly shows that Ep1 has an excellent 
correlation with the relative AA mean, yielding r=0.980, 
SE=0.049, and SEcv=0.057. Quercetin was dropped from 
the calculation because it showed an unusually high relative 
AA and lay far from the regression line (Figure 1). The 
same goes for separate AA linear correlations with Ep1; by 
dropping quercetin for the same reasons, all Ep1 vs. AA 
dependences yielded better correlations (Table 2).

These results are even more important considering that 
the correlation between Ep1 and relative AA mean is better 
than any separate AA correlation (Table 2) or any 
combination of two AA methods. Even the pair of the best 
separate AA correlations, i.e. average of FCR and FRAP 
values, yielded a slightly worse correlation, r=0.974.

The reason for quercetin to have such a high AA value 
measured by DPPH was explained by Foti (25), who has 
suggested that quercetin reacts with DPPH• radical so fast 
that it is consumed long before any conventional 
spectrophotometer can measure it. Moreover, quercetin 
quinone, a product of quercetin oxidation, also absorbs 
radiation at 519 nm, same as DPPH•. However, quercetin 
AA measured by all four methods was much greater than 
expected from its first oxidation potential. I therefore left 

it out from the AA vs. Ep1 regression for the set of flavonoids 
(Figure 1).

Furthermore, I correlated the 
s(C)
Σ AOSPRad from our 

earlier study (15) to the first oxidation potential and relative 
AA mean of flavonoids. Namely, flavonoids more prone to 
oxidation have lower 

s(C)
Σ AOSPRad. This means they have 

lower quantity of unpaired electrons in the rings of their 
radicals, resulting with more balanced electronic structure 
(15). In order to optimise the radical molecule from which 
I further calculated the 

s(C)
Σ AOSPRad of each flavonoid, I 

determined generally accepted (26, 27) active sites (A site, 
Table 1) using our earlier method (15).

When 
s(C)
Σ AOSPRad was correlated to Ep1, the regression 

yielded SE=0.080 (Model 1, Table 3). As can be seen from 
Figure 2, hesperetin showed the highest residual from the 
fit line (0.201 V) and, compared to regressions using 

s(C)
Σ

AOSPRad, it is by far the largest residual obtained of all the 
flavonoids we have studied (15). By leaving hesperetin out 
of the set, the regression yielded significantly better 
statistics, SE=0.055 (Model 2, Table 3). A similar result 
was obtained when I correlated 

s(C)
Σ AOSPRad to the relative 

mean AAs. The regression yielded SE=0.054 (Model 7, 
Table 3, Figure 3) with hesperetin excluded from the 
calculation (in addition to quercetin).

Bond dissociation energy (BDE) and ionisation 
potential (IP), which I calculated using PM6 [BDE/
IP(PM6)] (Table 1) as variables to correlate Ep1 and AAs, 
showed worse statistics. Regressions for BDE yielded 
SE=0.102 (Model 3, Table 3). After the exclusion of 
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Figure 1 The dependence of relative AA mean on Ep1 (pH=7) for 
the set of 14 flavonoids. Linear regression yielded R2=0.960, 
SE=0.049, and SEcv=0.057 after exclusion of quercetin

Table 2 Correlation coefficients, r, between the four methods and Ep1

Assay TEAC FCR FRAP DPPH Ep1 Ep1 (without Q)
TEAC 1 0.771 0.885 0.750 0.818 0.848
FCR 1 0.941 0.694 0.921 0.940
FRAP 1 0.859 0.921 0.976
DPPH 1 0.749 0.774
Ep1 1 1

Q – quercetin; DPPH – diphenyl-1-picrylhydrazyl; FCR – Folin Ciocalteu reagent; FRAP – ferric reducing ability of plasma; TEAC 
– Trolox equivalent antioxidant capacity
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hesperetin – because it has the highest residual (0.224 V) 
and did not fit into regression – the statistics was much 
better, SE=0.083 (Model 4, Table 3, Figure 4). When 
BDE(PM6) was correlated with AAs, SE was 0.107 (after 
exclusion of hesperetin beside quercetin, Model 8, Table 
3). IP(PM6) yielded SE=0.169 and 0.241 for the correlation 
with Ep1 and AAs, respectively, which is much worse than 
BDE and especially 

s(C)
Σ AOSPRad.

Linear regressions yielded results similar to the statistics 
obtained with BDE and IP calculated with density functional 
theory [BDE/IP(DFT)] (22) (Table 1). Regressions for BDE 
yielded SE=0.110 (Model 5, Table 3) when correlating Ep1. 
After the exclusion of kaempferol, because in this case 
kaempferol had the highest residual (0.284 V), the statistics 
was much better, SE=0.078 (Model 6, Table 3, Figure 5). 
When BDE(DFT) was correlated with AAs, the SE was 
0.079 (after exclusion of kaempferol beside quercetin, 
Model 9, Table 3), which is much better than with 
BDE(PM6). IP(DFT) yielded SE=0.15 and 0.207 for 
correlation with Ep1 and AAs, respectively, which was 
similar to IP(PM6).

Using together all experimental values for Ep1 from 
Table 1 and those reported in reference 15, at pH=7, in 
regression with 

s(C)
Σ AOSPRad I obtained R2=0.910, SE=0.074, 

and SEcv=0.080 (N=28), and after the exclusion of 
hesperetin R2=0.937, SE=0.062, and SEcv=0.068 (Figure 6, 
N=27), which speaks in favour of the stability of 

s(C)
Σ

AOSPRad as a variable for the estimation of the first oxidation 
potential. The results obtained are even more valuable since 
the average difference in Ep1 for quercetin, myricetin, 
luteolin, apigenin, and epicatechin in Table 1 and those 
reported in reference 15 was 0.032 V, with maximal 
difference for epicatechin (0.045 V).

I can conclude that 
s(C)
Σ AOSPRad again proved as a 

promising variable for the estimation of the first oxidation 
potential (15) and consequently antioxidant activity. It is 
considerably better than BDE(PM6) or BDE(DFT) (Models 

Figure 2 The dependence of experimental Ep1 (pH=7) on 

s(C)
Σ

 
AOSPRad, calculated using the PM6 method for the set of 14 

flavonoids. Quadratic regression yielded R2=0.926, SE=0.055, 
and SEcv=0.072 after exclusion of hesperetin (Model 2, Table 3)

Figure 3 The dependence of experimental relative AA mean on 

s(C)
Σ

 
AOSPRad, calculated using the PM6 method for the set of 14 flavonoids. 

Quadratic regression yielded R2=0.950, SE=0.054, and SEcv=0.073 after 
exclusion of quercetin and hesperetin (Model 7, Table 3)

Table 3 Models for the estimation of the first oxidation potential, Ep1, and antioxidant activity, AA

Model Method N

Slope (SE)
Independent variable

Intercept 
(SE) R2 SE SEcv

s(C)
Σ AOSPRad (

s(C)
Σ AOSPRad)2

BDE

Ep1

1 PM6 14 –2.7(16) 3.4(13) - 0.65(48) 0.844 0.080 0.092
2 PM6 13 –3.6(12) 4.10(94) - 0.89(35) 0.926 0.055 0.072
3 PM6 14 - - 0.0126(21) –3.56(66) 0.746 0.102 0.121
4 PM6 13 - - 0.0130(18) –3.71(55) 0.833 0.083 0.105
5 DFT 14 - - 0.0097(18) –2.75(58) 0.703 0.110 0.127
6 DFT 13 - - 0.0106(13) –3.03(42) 0.854 0.078 0.094

AA
7 PM6 12 4.1(11) –4.80(93) - –0.11(33) 0.950 0.054 0.073
8 PM6 12 - - –0.0151(24) 5.21(75) 0.802 0.107 0.142
9 DFT 12 - - –0.0138(14) 4.87(47) 0.901 0.079 0.094
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1–6, Table 3), while IP should not be used as a variable for 
modelling either Ep1 or AA.
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Odnos između antioksidacijskih aktivnosti, prvog elektrokemijskog oksidacijskog potencijala i spinskih populacija 
atomskih orbitala radikala flavonoida

U radu je pokazano da je usrednjivanjem vrijednosti antioksidacijskih aktivnosti (AA) mjerenih različitim metodama 
moguće dobiti izvrsno slaganje (R2=0,960) između prvog elektrokemijskog oksidacijskog potencijala (Ep1) i AA. 
Pojedinačne korelacije AA vrijednosti dobivene svakom od četiriju metoda [R2 je 0,561 za difenil-1-pikrilhidrazil (DPPH), 
0,848 za Folin-Ciocalteu reagens (FCR), 0,848 za sposobnost plazme da reducira željezo (FRAP) i 0,668 za Trolox 
ekvivalent antioksidacijske aktivnosti (TEAC)] bile su lošije, a u nekim slučajevima potpuno nekorisne, kao što je 
primjerice korelacija s DPPH. Također, zbroj spinskih populacija atomskih orbitala ugljikovih atoma u skeletu molekule 
radikala (

s(C)
Σ AOSPRad), izračunana semi-empirijskom parametrizirajućom metodom 6 (PM6) u vodi, korelirana je s Ep1 i 

AA, dajući R2=0,926 i 0,950. Pokazano je da je to puno bolja varijabla za procjenu vrijednosti Ep1 i AA od energije 
disocijacije veze (BDE), R2=0,854 i 0,901 za Ep1 i AA, a naročito od ionizacijskog potencijala (IP), R2=0,445 i 0,435 za 
Ep1 i AA.

KLJUČNE RIJEČI: DFT; oksidacijski potencijal; PM6; polifenoli; uklanjanje radikala
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