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Pyrethroid exposure and neurotoxicity: a mechanistic 
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Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns 
about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic 
neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, 
neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other 
receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of 
this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, 
and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, 
and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by 
future research of novel methods of protection against neurological disorders caused by pesticides that may also find their 
use in the management/treatment of Parkinson’s disease.
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Pesticides are a major group of chemicals extensively 
used throughout the world to kill, repel, or control pests. 
They include fungicides, rodenticides, herbicides, and 
insecticides. Human exposure to these compounds is 
inevitable because of pesticide residues in agricultural 
products and the environment. Pesticides can disrupt the 
function of different organs in the human body and affect 
the endocrine, reproductive, renal, immune, cardiovascular, 
respiratory, and nervous systems.

A number of epidemiological and experimental studies 
have confirmed the association between exposure to 
pesticides and the development of neurodegenerative 
diseases (1–4), which are characterised by progressive 
degeneration of the structure and function of neurons (5). 
Several have also confirmed the association between 
pesticides (such as pyrethroids, organophosphates, and 
organochlorines) and Parkinson’s disease (6–10), 
characterised by the disappearance of nigrostriatal 
dopaminergic neurons in the substantia nigra pars 
compacta (SNpc) and the presence of intraneuronal 
proteinaceous cytoplasmic inclusions, also known as Lewy 
bodies (LBs) (11).

Pesticides induce disorders through several mechanisms 
of action such as inflammation, oxidative stress, 
mitochondrial dysfunction and cell death (12). The aim of 

this review is to clarify those involved in neurotoxicity 
induced by pyrethroids (deltamethrin, cypermethrin, and 
permethrin) and propose the course of future investigations 
to improve our understanding of the problems at hand and 
protection against pyrethroid-induced neurotoxicity.

PYRETHROIDS

Pyrethroids are a class of synthetic insecticides based 
on pyrethrins isolated from the Chrysanthemum genus of 
plants (6). These pesticides consist of an acid moiety, a 
central ester bond, and an alcohol moiety. The acid moiety 
has two chiral carbons (trans and cis), which makes 
pyrethroids stereoisomeric (Figure 1). The toxic effects of 
the cis isomers are typically stronger than those of the trans 
isomers (13). Pyrethroids are therefore divided in two types 
(type I and ΙΙ) according to their toxicity and structural 
characteristics (Table 1) (6, 14).

In vivo and in vitro studies (Tables 2 and 3) suggest that 
the main target of pyrethroid-induced neurotoxicity are 
voltage-gated sodium channels. Pyrethroids connect to the 
sodium channel α subunit and decelerate the stimulation of 
the channels. The channel remains active for a longer period 
of time, permitting more sodium ions to pass and depolarise 
neuronal membrane (6, 14, 47). The secondary targets of 
pyrethroid neurotoxicity are calcium and chloride channels 
(48). Type II pyrethroids, such as deltamethrin and 
cypermethrin, bind to GABA-gated chloride channels and 
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inhibit them (14, 49). The main concern about exposure to 
pyrethroids is  the development of progressive 
neurodegenerative disorders (50). Due to its lipophilic 
nature, for example, deltamethrin can reach the brain in 
amounts that are probably toxic (15). Numerous 
investigations have indicated that it increases the risk of 
neurodegenerative diseases (51–54), as it inhibits nerve 
impulse by altering voltage-sensitive sodium channel 
kinetics and ligand-gated ion channels (GABA receptors, 
nicotinic acetylcholine receptors, and glutamate receptors) 
(14, 54). Its toxicity in the brain has been demonstrated in 
rats through the inhibition of acetylcholinesterase (AChE) 
activity (16, 17). Probably due to its lipophilic nature, 
deltamethrin inhibits AChE activity by reducing the 
acetylcholine binding space at the aromatic, hydrophobic 
surface of AChE (17, 55).

Cypermethrin is also lipophilic and involved in the 
pathogenesis of various neurological disorders as it 
accumulates in the brain (18, 56). A high concentration of 
cypermethrin in the brain leads to symptoms of 
neurobehavioral toxicity (57). Studies in rats have shown 
that cypermethrin leads to the loss of dopaminergic neurons 
in the substantia nigra and of the striatal dopamine content 
(19–21, 58, 59) through oxidative damage, inflammation, 
and apoptotic cell death (19). Its main target in humans is 
the voltage-gated sodium channel (VGSC), but chloride 
channels, voltage-gated calcium channels (VGCC), and 
potassium channels are also targeted (50).

Permethrin is a type I pyrethroid used to control 
woodworms indoors and outdoors (60). Like other 
pyrethroids, permethrin affects the sodium channels, 
neurotransmitters, and receptor-ionophore complexes (61). 
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Table 1 Toxicity symptoms and structural characteristics of pyrethroids pesticides

Pesticide type Structure Physiological effects and 
symptoms

Some of the 
pyrethroid 
pesticides

Ref.

Type I (tremor 
or T syndrome)

A cyano moiety at the α-position 
(α-cyano)

Behavioural arousal, 
hyperexcitation, ataxia, 

aggressive sparring 
and fine body tremor 

developing to whole-body 
tremor

Permethrin 
Allethrin 
Cimethrin 
Bifenthrin 

Bioallethrin

(6, 14)

Type ΙΙ 
(choreoathetosis 
with salivation 
or CS)

With an alpha-cyano moiety

Hypersensitivity, coarse 
tremor progressing to 

choreoathetosis, profuse 
salivation and clonic 

seizures

Deltamethrin
Cyfluthrin

Cyhaluthrin
Cypermethrin
Tralomethrin
Flucythrinate

(6, 14)

Figure 1 Structures of cypermethrin, deltamethrin, and permethrin
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determined through its marker malondialdehyde (MDA) 
(51, 70, 77). Romero et al. (37) were the first to show that 
deltamethrin metabolites 20-OH- and 40-OH-deltamethirn 
were in fact more toxic than the parent compound to SH-
SY5Y neuroblastoma cells.

Oxidative damage in rat brain and other tissues was also 
reported for cypermethrin (78, 79). Singh et al. (19) 
identified higher nitrite (an indicator of nitrosamine stress) 
and lipid peroxide (LPO, an indicator of oxidative stress) 
levels in the nigrostriatum. Nitrite and LPO were also 
significantly increased in the peripheral blood of rats 
exposed to cypermethrin dose that induces nigrostriatal 
dopaminergic neurodegeneration (26).

On the other arm of the oxidation balance, deltamethrin 
was reported to substantially decrease antioxidative 
activities of SOD, CAT, and GPx, and GSH in rat brain 
tissue (16, 17, 27). Similar effect on antioxidant enzymes 
was reported for cypermethrin (80 mg/kg, single dose) (79).

Oxidative stress caused by pyrethroids triggers 
important signalling pathways, including Nrf2 and NF-кB, 
and it can also induce mitochondrial dysfunction that leads 
to apoptosis (Figure 2).

Inflammation

Microglia (the resident macrophages in the brain) play 
a key role in preserving the normal function of the brain. 
M1 microglia (pro-inflammatory microglia) defend against 
pathogens by producing pro-inflammatory cytokines and 
proteins, including tumour necrosis factor alpha (TNFα), 
interleukin 12a (IL12a), CD16 (Fc receptor, FcyRIII), and 
inducible nitric oxide synthase (iNOS). M2 microglia (anti-
inflammatory microglia), in turn, produce various 
neuroprotective components like insulin-like growth factor 
1 (IGF1) and brain-derived neurotrophic factor (BDNF) 
(80). Excessive microglial activation, which leads to 
production of free radicals, cytokines, and chemokines (81), 
is associated with Parkinson’s disease (82). There are plenty 
of reactive microglial cells in the substantia nigra and 
striatum of patients with Parkinson’s disease (83). 
Microglial activation and subsequent overexpression of 
pro-inflammatory proteins triggered by cypermethrin show 
that inflammation is the key to degeneration of the 
nigrostriatal dopaminergic neurons (20, 21, 59), and NF-κB 
is the main transcription factor that regulates the genes 
involved in pro-inflammatory responses (84). In normal 
conditions, NF-κB remains bound to an inhibitory protein 
called IκB (inactive) in the cytoplasm (85). External 
stimulation, however, triggers IκB phosphorylation through 
the IκB kinase (IKK) complex. NF-κB translocates into the 
nucleus and stimulates downstream gene transcription (86), 
inducing the response of proinflammatory cytokines such 
as IL-1b and TNF-α (87).

There are some agents that modulate the NF-κB activity 
such as Nurr1 and calcium (Ca2+), and they are both affected 
by pyrethroids. Ca2+ is vital for maintaining perfect neuronal 

There is increasing evidence of its association with 
neurological disorders (1). Recent studies in rats suggest 
that the neurotoxicity it causes is the most devastating in 
the early stages of development when the signalling 
pathways are formed (22, 23, 62, 63). Permethrin has been 
reported to increase α-synuclein, decrease striatal dopamine 
levels, induce oxidative stress, and inhibit mitochondrial 
complex I of the electron transport chain (24, 64-67). All 
of these changes in the striatum are the hallmarks of 
Parkinson’s disease (66). In fact, the Parkinson’s disease 
model induced by permethrin in the studies referenced 
above is suitable for investigating the initial markers of the 
disease which may help to find new ways to manage it (22).

Pyrethroids are metabolised by oxidation mediated by 
cytochrome P450 (CYP450) enzymes (37). In the brain, it 
is CYP2E1 that acts against environmental chemicals and 
plays a vital role in neuronal detoxification (68, 69). 
However, its overexpression in the brain tissue, as reported 
by Galal et al. after deltamethrin treatment (25), could 
increase the risk of neurotoxicity. Singh et al. (70) reported 
significantly increased levels of CYP2E1, CYP1A1, 
CYP2B1, and CYP2B2 in the hypothalamus, cerebellum 
and hippocampus of rat offsprings after prenatal treatment 
with high amounts of cypermethrin (2.5 or 5.0 mg/kg). In 
another study (71), the same group investigated the prenatal 
effects of low doses of cypermethrin on CYP2D1 and 
CYP3A1 expression in the brain of rat offspring. The mRNA 
and protein expression of CYP2D1 or 3A1 were increased, 
whereas the mRNA and protein expression of GABAergic, 
muscarinic, and dopaminergic receptors was decreased. 
Such reduction in dopaminergic receptors has been reported 
in Parkinson’s disease (72). The authors concluded that 
changes in CYP2D1 and 3A1 may be closely associated 
with changes in these neurotransmitter receptors. Other 
authors also found the association between these CYPs and 
adjustments in the neurotransmission pathways (73), but 
further research is needed to establish the correlation 
between cytochrome isoenzymes and neurotransmitter 
receptors more precisely.

MECHANISMS OF PYRETHROID 
NEUROTOXICITY

Oxidative stress

Oxidative stress is the result of imbalance between free 
radical production and antioxidant defence (52) and is 
considered the key mechanism of pesticide toxicity (74). 
In exposed animals, free radicals such as superoxide anion, 
hydroxyl radicals, and hydrogen peroxide (H2O2) are 
produced by the metabolism of pyrethroids (37). Oxidative 
stress seems to particularly target the brain because of its 
high capacity to consume oxygen (51). Several studies 
reported it as the main mechanism of deltamethrin toxicity 
in rat brains (75, 76). Deltamethrin exposure also increases 
nitric oxide (NO•) and lipid peroxidation (LPO), as 
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Table 2 In vivo pyrethroid studies

Species Pesticide Time of 
exposure Dose Effects Result Ref.

Rat Deltamethrin 90 days 0.32 mg/kg

↓ GSH
↓ CAT and GPx
↑ Cyt-c, Cas-3

↑ MDA

oxidative 
stress, 

apoptosis, 
mitochondrial 
dysfunction

(15)

Rat Deltamethrin 14days 7.2 mg/kg

↑ MDA
↓ SOD, CAT, GPx 

activities
↓ AChE activity

oxidative stress (16)

Rat Deltamethrin 28 days 1.25 mg/100g ↓ AChE activity
↓ SOD and CAT activity oxidative stress (17)

Wistar 
rats Cypermethrin 30 days 12 mg/kg

↓ AChE
↓ Monoamine oxidase 

(MAO) activity
↑Thiobarbituric acid-
reactive substances 

(TBARS)
↓ GSH

↓ GST, GPX, CAT and 
SOD

necrosis 
apoptosis (18)

Wistar 
rats Cypermethrin

Twice a week 
(1.5 mg/kg) 

during postnatal 
days 5–19. Two 
months later, 12 
weeks (15 mg/

kg)

↓ Dopaminergic neurons
↑ Bax, caspase-3, 

cytochrome C
↑ COX-2, p53, ↑ JNK, 
ERK1/2, p38 MAPK

↑TNF-α

apoptosis 
oxidative stress 
inflammation

(19)

Male rats Cypermethrin

Twice a week 
(1.5 mg/kg) 

during postnatal 
days 5–19. Two 
months later, 12 
weeks (15 mg/

kg)

↑ JNK, p38 MAPK
↑ p53, caspase-3
↑ TNF-α, HO-1

↓ Bcl-2

mitochondrial 
dysfunction, 

apoptosis
(20)

Wistar 
rats Cypermethrin 5–19 days 1.5 mg/kg

↓ Number of TH-positive 
cells

↓ Dopamine content
↑ α-synuclein
↑ LPO, NO

↑ Cyt-c, caspase- 3
↓ Bax

oxidative 
damage, 

mitochondrial 
dysfunction 

and apoptosis

(21)

Male and 
female 
Wistar rat

Permethrin 15 days
PND6 to PND21 34.05 mg/kg ↓ DA

↓ Dopaminergic neurons

cognitive 
impairment, 
deterioration 
in locomotor 
performances

(22)

Male and 
female 
Wistar 
rats

Permethrin 15 days
PND6 to PND21 34.05 mg/kg

↓ Dopamine and 5-HT
↑ Dopaminergic and 
serotonergic turnover 
(↑ HVA,a dopamine 

metabolite,↑ 5-HIAA, a 
5-HT

metabolite)
↑ NE

↓ NE turnover
↓ MHPG (a NE 

metabolite)

cognitive 
disorder (23)
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Species Pesticide Time of 
exposure Dose Effects Result Ref.

Male and 
female 
Wistar 
rats

Permethrin 15 days
PND6 to PND21 34.05 mg/kg

↓ Nurr1 (in striatum)
↓ Glutamate (in 
hippocampus)

↓ Ca++ (in striatum and 
hippocampus)

↓ NO (in striatum and 
hippocampus)
↑ NO (plasma)

↓ SOD (plasma)

oxidative stress (24)

Rat Deltamethrin 30 days 0.6 mg/kg

↑ MDA
↑ NO

↑ TP53 mRNA
↑ COX2

↑ CYP2E1

oxidative stress 
apoptosis (25)

Wistar 
rats Cypermethrin

Twice a week 
(1.5 mg/kg) 

during postnatal 
days 5–19. Two 
months later, 12 

weeks (15 mg/kg)

↑ Nitrite (end product of 
nitric oxide)

↑ LPO
↓ GST activity (plasma)
↓ SOD activity (PMNs)

↓ Catalase activity (plasma)

oxidative stress (26)

Rat Deltamethrin 15 days 10 mg/kg
↑ MDA
↓ GSH

↓ SOD activity
oxidative stress (27)

Male and 
female 
Wistar 
rats

Permethrin 15 days 34.05 mg/kg

↓ Nurr1 (striatum)
↑ Nurr1, Nrf-2 and NF-

κB p65 (cerebellum)
↓ NO (cerebellum)
↑ Ca++ (striatum, 

cerebellum)
↓ Glutamate (cerebellum)

dopaminergic 
neuronal 
disorders

(28)

Rat Deltamethrin 7 days 12.5 mg/kg ↑ Bax
↓ Bcl-2 apoptosis (29)

Fish 
Common 
carps 

Cypermethrin 3 days (0.01,0.005) 
ppm

↑ Caspase 3, caspase 8
↑ iNOS

inflammation 
apoptosis (30)

Male 
mice Cypermethrin 18 days 20 mg/kg

Inhibition of AChE 
activity
↑ H2O2
↑ MDA

oxidative stress (31)

Wistar 
rats Cypermethrin

Twice a week 
(1.5 mg/kg) 

during postnatal 
days 5–19. Two 
months later, 12 

weeks (15 mg/kg)

↑ Ulk 1, Beclin 1, Atg 12
↑ p62 accumulation

↑ LC3 II
↓ LAMP 2

aberrant 
autophagy (32)

Wistar 
rats Cypermethrin 7 days 3.83 mg/kg

↑ LPO
↓ GSH

↓ SOD, CAT, GST, GR, 
and GPx
↓ AChE

oxidative stress (33)

Zebra fish Deltamethrin 2 mg/mL

↓drd1mRNA
↑th

↑HVA (metabolite of 
dopamine)

dopaminergic 
dysfunction (34)

Mice Cypermethrin+ 
Deltamethrin E10.5 to E16.5 1.2 mg/kg ↑ Bax

↓ Bcl-xl apoptosis (35)

Male 
Wistar 
rats

Permethrin 60 days 150 mg/kg ↓ GSH oxidative stress (36)
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activity. Yet, high NF-κB activity can increase neuronal and 
glial Ca2+ concentration, as shown in the prefrontal cortex 
of 500-day-old rats exposed to permethrin in early life (28). 
Nurr1, in turn, exerts its anti-inflammatory role by 
repressing NF-κB activity in brain microglia (87).

The pro-inflammatory cytokine TNFα has been 
suggested to moderate the entire cytokine network. It is 
regulated by NF-κB, and its production can later enhance 
the activation of NF-κB (86). At higher levels TNFα can 
cause oxidative stress via ROS accumulation (88), and 
several studies have demonstrated that cypermethrin can 
increase the levels of TNFα (19, 20, 89). Cypermethrin has 
also been demonstrated to increase IL-1 levels in brain 
striatum (90). The use of NF-κB signalling pathway 
inhibitors can therefore decrease pyrethroid-induced 
neurotoxicity.

Mitochondrial dysfunction

The mitochondrion is an important organelle, as it 
regulates cell functions such as metabolism, membrane 
potential, and apoptosis (77, 91). ROS and oxidation 
damage mitochondrial DNA, disrupt its respiratory chain, 
and affect membrane permeability (92). Several studies 
have shown that mitochondrial dysfunction is involved in 
the aetiology of neurodegenerative disorders, including 

Huntington’s disease, Alzheimer’s disease, amyotrophic 
lateral sclerosis, and Parkinson’s disease (93, 94). 
Mitochondrial dysfunction is associated with α-synuclein 
aggregation in PARK2 iPSC-derived neurons (95). 
Pyrethroids seem to affect mitochondrial membrane 
potential and complex I action, as evidenced in the 
substantia nigra and striatum of cypermethrin-exposed rats 
(20, 21). Cypermethrin has also been shown to change 
mitochondrial proteome profile in the substantia nigra and 
striatum of rats (Table 4) (20). Similar was observed with 
mitochondrial Cyt-c and cytosolic Bax proteins, whose 
levels dropped substantially in cypermethrin-treated 
animals (21). These changes in the pattern of protein 
expression reflect abnormal mitochondrial function leading 
to the nigrostriatal dopaminergic neurodegeneration (96, 
102, 103).

Apoptosis

Apoptosis or programmed cell death is triggered by 
toxins (104), radiation (105), hypoxia (106), oxidative stress 
(107), ischaemia/reperfusion (108), and DNA damage 
(109). The mitochondrial (intrinsic) pathway and death 
receptor (extrinsic) pathway are the two main signalling 
pathways inducing apoptosis (110). The mitochondrial 
pathway has been suggested as the main apoptosis pathway 
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Figure 2 Production of ROS on one hand and reduction of enzymatic antioxidants (SOD, CAT, GPx) and non-enzymatic antioxidant 
(GSH) induce oxidative stress that leads to mitochondrial dysfunction and apoptosis
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Table 3 In vitro pyrethroid studies
Type of 
cell Pesticide Dose Effect Result Ref.

SH-SY5Y 
cells

Deltamethrin 
and its main 
metabolites

10 µmol/L ↑ NO
↑ MDA oxidative stress (37)

PC12 cells Deltamethrin 10 µmol/L
↑ Nrf2
↑ HO-1
↑ ROS

DLM increases ROS 
and subsequently 

increases Nrf2 
expression and 

activity

(38)

SH-SY5Y 
cells Deltamethrin 50–250 μmol/L

↑ cytochrome c
↑ caspase-9

↑ Bax
↓ Bcl-2

↑ PINK1( in mitochondria)

mitochondrial 
dysfunction
apoptosis

(39)

PC12 Cells Deltamethrin 10–100 µmol/L

↑ LDH
↓ DA(dopamine)

↑ Caspase-9 and -3
↑ Beclin-1, p62, and LC3-II

↑ ROS
↑ ERK1/2, p38, and JNK activity

apoptosis
autophagy (40)

PC12 cells Permethrin 1 µmol/L (72 h) ↑ Nurr1

pro-oxidant 
activity of the 
pesticide lead 
to Nurr1 up-

regulation, that 
significantly 

reduced in the 
presence of 
antioxidants

(41)

PC12 cells Cypermethrin+ 
Deltamethrin

1 µmol/L DM 
and 100 µmol/L 

CP

↑ Bax
↓ Bcl-xl apoptosis (35)

SH-SY5Y 
cell line Cypermethrin 0–200 µmol/L 

for 3 days ↑ LDH necroptosis (42)

SH-SY5Y 
cells alpha-cypermethrin 1–100 µmol/L

↑ MDA
↑ NO

↑ LDH
↑ AKT1; APAF1; ATG3; ATG5; 

ATG7; ATG12; ATP6V1G2; 
BCL2; BCL2L1; BIRC2; BMF; 

CASP3; CASP7; CASP9; 
COMMD4; CTSB; CYLD; 

DENND4A;
FAS; GADD45A; HSPBAP1; 

HTT; IGF1R; JPH3; 
MAP1LC3A; MAPK8; NFKB1; 
NOL3; PARP2; SNCA; SPATA2; 

SQSTM1; SYCP2; TXNL4B; 
ULK1; and XIAP genes

↓ GRB2, PARP1 and TP53

oxidative stress
apoptosis
autophagy
necrosis

(43)

PC12 cells Cypermethrin 1–300 μmol/L
↓ BCL2

↑ miR-200a/b/c
↑ P53

apoptosis
mitochondrial 
dysfunction

(44)

SH-SY5Y 
cells

Chlorpyrifos + 
Cypermethrin

(17.5+1.75, 
25+2.5, 

30+3.0 μmol/L)
↑ Caspase 3

apoptosis (TNF-α 
receptors contribute 

to the induction 
of SH-SY5Y cells 

apoptosis )

(45)

PC12 cells Deltamethrin 1–100 μmol/L ↓ Dopamine
↓ TH

↓ dopamine 
biosynthesis (46)
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induced by pesticides such as paraquat (111), and various 
studies have shown that exposure to pyrethroids significantly 
affects the survival of neurons in rat brain through 
mitochondrial apoptosis (112, 113).

Pyrethroids can trigger apoptosis through ROS such as 
H2O2 or OH● (38, 75, 114) and cytotoxins (77, 115). 
Deltamethrin has been evidenced to induce apoptosis in the 
neuronal cells of the cerebral cortex, hippocampus, and 
striatum (15, 29).

Apoptosis can also be triggered through mitochondrial 
damage and activation of caspase-3 and -9, as evidenced 
for deltamethrin in SH-SY5Y cells (39). Caspase-3 has a 
vital function in both extrinsic and intrinsic pathways of 
apoptosis (116, 117). In a study by Gasmi et al. (15), 
exposure to deltamethrin resulted in higher cytochrome c 
and caspase-3, followed by apoptosis, which confirmed 
mitochondrial damage (swelling and permeability).

Tumour protein p53 also plays a critical role in apoptosis 
(118). Stress signals such as DNA damage can enhance the 
otherwise low content of p53, which, in turn, increases the 
levels of the apoptotic gene (COX2) normally expressed in 
the brain (119, 120). This has been confirmed by Galal et 
al. (25), who reported that deltamethrin increased the mRNA 
expression of p53 and COX2. Cypermethrin was also 
reported to increase the expression of p53 (along with 
caspase-3) in rat striatum and substantia nigra (19, 20), and 
these findings were associated with apoptosis. One in vitro 
study in common carp brain cells (30) suggested that 

cypermethrin could induce apoptosis through the extrinsic 
pathway, judging by the elevated caspase 8 levels.

One of important pathways regulating apoptosis 
involves mitogen-activated protein kinases (MAPKs) (121), 
which are also involved in the development of 
neurodegenerative disorders (121, 122) and have been 
reported in pesticide-induced apoptosis in human 
neuroblastoma cells (SH-SY5Y) (123). In another study 
(20), cypermethrin increased the expression of p38 MAPK 
in the striatum and substantia nigra. Park et al. (40) reported 
MAPK cascade activation in deltamethrin-induced neuronal 
cell death through oxidative stress.

NEUROPROTECTIVE MECHANISMS AND 
PYRETHROID TOXICITY

Keap1/Nrf2/ARE pathway

An efficient repressor system to keep homeostasis (124) 
is the Keap1-Nrf2 pathway, which triggers the Antioxidant 
Response Element (ARE), which, in turn, is involved in the 
expression of antioxidant enzyme genes (124–126). Under 
oxidative stress, multiple cysteines on Keap1 react with 
reactive oxygen species (ROS) and lead to a conformational 
change that releases Nrf2 (127). Nrf2 separates from Keap1 
and accumulates in the nucleus to stimulate the expression 
of several phase 2 drug metabolising enzymes and 
antioxidant genes (128).
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Table 4 Mitochondrial protein expression pattern after CYP exposure

Source of the 
mitochondrial protein Protein name Decrease Increase Effect Ref.

Striatum
PDHE1-β + impairment in 

mitochondrial 
transport 

and energy 
metabolism

(20)
NDP kinase A +

Substantia nigra
DLAT +

α-tubulin +
Substantia nigra ATP5D + impairment in 

electron transport 
chain and energy 

metabolism

(59)
Striatum

NDUFV2 +
IDH-NAD α +

Substantia nigra PEBP1 +
impairment in 
neuronal repair 

and growth
(96)

Striatum GNB-2 + indicated in 
neurological 

disorders and PD
(96)

Substantia nigra γ-enolase +

Striatum Hsp-70 + apoptosis (97)
Substantia nigra COX 5a + effect on 

mitochondrial 
complex 5

(98)
Striatum

COX VIa (AA 1–118) +
COX VIa (85 AA) +

Substantia nigra Cu-Zn SOD + oxidative damage 
and apoptosis (99, 100)

Striatum Prx2 + redox cycling 
alternation (101)

Substantia nigra Prx3 +
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In rat brain exposed to deltamethrin Nrf2 activates the 
HO-1 gene in vitro and in vivo (75, 129). Li et al. (38) 
confirmed nuclear Nrf2 accumulation and gene expression 
of HO-1 after exposure to deltamethrin in PC12 cells. Their 
study has demonstrated for the first time that Nrf2 is 
triggered by pesticides in PC12 cells and implicated in 
dopaminergic neuronal cell response to pesticide 
neurotoxicity. In fact, Nrf2 translocation into the cell 
nucleus is a response to deltamethrin-induced free radicals 
(38) and is an attempt to reduce oxidative stress. However, 
this Nrf2 translocation effect may be inadequate to protect 
against pyrethroid-induced neurotoxicity. This transcription 
factor also regulates the genes involved in anti-inflammatory 
responses. In a study by Carloni et al. (28), Nrf2 gene 
expression increased after exposure to permethrin in the 
cerebellum alongside with Nurr1, NF-κB, and Ca2+. All 
these findings suggest that future research could focus on 
these beneficial properties of Nrf2 in the treatment of 
neurotoxicity.

Peroxisome proliferator-activated receptors

One of the neuroprotective signalling pathways against 
pyrethroid-induced toxicity and apoptosis involves 
peroxisome proliferator-activated receptors (PPARs) 
including PPARγ, PPARα, and PPARβ/δ. All three PPAR 
subgroups are believed to regulate gene expression by 
attaching to response elements (PPREs) in promoter genes. 
PPARγ regulates mitochondrial function and is extensively 
expressed in the basal ganglia, piriform cortex, and dentate 
gyrus of the brain (130). Growing evidence indicates that 
PPARγ agonists have a neuroprotective role in various 
animal neurodegeneration models (131–133). Furthermore, 
Juyeon et al. (39) have reported that rosiglitazone (PPAR-γ 
agonist) defends against deltamethrin-caused putative 
kinase 1 (PINK1) mediated apoptosis by suppressing 
cytosolic PINK1 translocation into mitochondria.

Autophagy

Autophagy has a vital role in eliminating damaged 
organelles to preserve cell homeostasis (134) and has been 
reported to protect against deltamethrin neurotoxicity 
through inhibition of apoptosis (40) (Figure 3). It also has 
an important role in protecting against neurotoxicity 
induced by an environmental stressor (135). If it is 
downregulated, misfolded α-synuclein proteins may 
aggregate in the neurons, which has been observed in 
neurodegenerative disorders such as Parkinson’s disease 
(136). Other studies confirm that autophagy removes 
accumulated α-synuclein associated with Parkinson’s 
disease (137–139).

One of the key regulators of autophagy is a kinase called 
mechanistic target of rapamycin (mTOR). It plays a role in 
the phosphorylation of ULK1, which activates autophagy 
by Beclin 1 phosphorylation (140). Figure 4 shows different 
proteins and molecules involved in autophagy.

Exposure to pesticides was reported to impair 
autophagic flux and subsequent increase in α-synuclein 
accumulation (141, 142). Mishra et al. (32) demonstrated 
that increased Beclin 1, Atg 12, and ULK1 levels and LC3-I 
conversion to LC3-II in cypermethrin-exposed rats, pointed 
to the formation of autophagosome, but LAMP2 reduction 
indicated that despite autophagosome formation, autophagy 
was disturbed because of poor lysosome quality and 
acidification. These findings suggest that components that 
regulate autophagy can be useful against cypermethrin-
induced disruptions of autophagy.

Nurr1 and permethrin neurotoxicity

Nurr1 (also known as NR4A2) is an orphan nuclear 
receptor NR4A that has been demonstrated to regulate 
dopaminergic neuron development and survival (143). 
Nurr1 stimulates the transcription of tyrosine hydroxylase 
(TH) and dopamine active transporter (DAT), which are 
involved in dopamine biosynthesis and storage, respectively 
(143). Nurr1 reduction caused by accumulation of 
α-synuclein has been reported to lead to dopamine neuron 
dysfunction and downregulation of the Nurr1 gene in the 
substantia nigra and striatum has been reported in patients 
with Parkinson’s disease (144–148).

Nurr1 expression declines with age (149). Carloni et 
al. (24) reported lower Nurr1 mRNA and protein in the 
striatum of adult (300-day-old) rats exposed to permethrin 
from postnatal day 6 to 21 in comparison with the control 
group. In another study, the same authors reported Nurr1 
downregulation and at the same time increased Nurr1 
protein content in the striatum of 500-day-old rats treated 
with permethrin from postnatal day 6 to 15 (28), which 
points to a post-transcriptional compensation mechanism 
and reduction of Nurr1 ubiquitinylation. Bordoni et al. 
(150), in contrast, reported that neonatal treatment with 
permethrin resulted in enhanced Nurr1 gene expression in 
adolescent rats, which they later confirmed with an 
upregulation of the Nurr1 gene and its protein level in 
permethrin-treated PC12 cells (41). The authors suggested 
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Figure 3 Apoptosis is inhibited after exposure to an autophagy 
inducer. Autophagy could be a therapeutic strategy against 
pyrethroid-induced neurotoxicity
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that permethrin may have enhanced Nurr1 expression 
through its pro-oxidant activity. However, more studies are 
required to clarify the mechanisms related to exposure to 
pyrethroids and change in Nurr1 gene expression.

CONCLUSION

Considering evident pyrethroid neurodegenerative 
effects common in Parkinson’s disease, the question arises 
whether they constitute a risk factor for its development. 
However, little is still known and all implications of an 
association between pyrethroids and Parkinson’s disease 
come from experimental studies in animal models, and only 
an accumulation of future epidemiological knowledge could 
shed some light on the matter. In the meanwhile, our review 
points toward new paths of research of molecular 
mechanisms that could help against pyrethroid-induced 
neurodegenerative disorders and perhaps find their 
application in managing/treating Parkinson’s disease. In 
that respect, signalling pathways such as Nrf2 and Nurr1 
have a potential, but the effects of their agonists against 
pyrethroid-induced neurotoxicity have not yet been 
investigated. Promising are also the agents that reduce 
inflammation and apoptosis or improve autophagy, and 
lysosomal and mitochondrial function.
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Izloženost piretroidima i njihova neurotoksičnost: mehanicistički pristup

Piretroidi su skupina sintetskih insekticida u širokoj primjeni: u kućanstvima i poljoprivredi, šumarstvu i komunalnoj 
higijeni. Problem vezan uz njihovu primjenu, koji je danas u središtu znanstvene pozornosti, njihova je neurotoksičnost 
i propadanje nigrostrijatalnih dopaminergičnih neurona kakvo je zamijećeno kod Parkinsonove bolesti. Glavni su mehanizmi 
toga neurotoksičnoga djelovanja oksidacijski stres, upalni procesi, gubitak neurona i mitohondrijska disfunkcija, a ono 
najviše pogađa ionske kanale. No i drugi su receptori, enzimi i signalni putovi pogođeni odnosno sudjeluju u poremećajima 
izazvanima piretroidima. Cilj je ovoga preglednog rada rasvijetliti mehanizme neurotoksičnoga djelovanja piretroida 
deltametrina, permetrina i cipermetrina. Također se razmatra kako izloženost piretroidima djeluje na uobičajene ciljeve 
i putove liječenja Parkinsonove bolesti, uključujući Nrf2, Nurr1 i PPARγ, te na koja pitanja trebaju odgovoriti buduća 
istraživanja i nove metode zaštite od neuroloških poremećaja izazvanih ovim pesticidima.

KLJUČNE RIJEČI: cipermetrin; deltametrin; Nrf2; Nurr1; Parkinsonova bolest; permetrin; pesticidi; PPARγ
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