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Oxalate urolithiasis (nephrolithiasis) is the most frequent type of kidney stone disease. Epidemiological 
research has shown that urolithiasis is approximately twice as common in men as in women, but the 
underlying mechanism of this sex-related prevalence is unclear. Oxalate in the organism partially originate 
from food (exogenous oxalate) and largely as a metabolic end-product from numerous precursors generated 
mainly in the liver (endogenous oxalate). Oxalate concentrations in plasma and urine can be modifi ed by 
various foodstuffs, which can interact in positively or negatively by affecting oxalate absorption, excretion, 
and/or its metabolic pathways. Oxalate is mostly removed from blood by kidneys and partially via bile 
and intestinal excretion. In the kidneys, after reaching certain conditions, such as high tubular concentration 
and damaged integrity of the tubule epithelium, oxalate can precipitate and initiate the formation of stones. 
Recent studies have indicated the importance of the SoLute Carrier 26 (SLC26) family of membrane 
transporters for handling oxalate. Two members of this family [Sulfate Anion Transporter 1 (SAT-1; 
SLC26A1) and Chloride/Formate EXchanger (CFEX; SLC26A6)] may contribute to oxalate transport in 
the intestine, liver, and kidneys. Malfunction or absence of SAT-1 or CFEX has been associated with 
hyperoxaluria and urolithiasis. However, numerous questions regarding their roles in oxalate transport in 
the respective organs and male-prevalent urolithiasis, as well as the role of sex hormones in the expression 
of these transporters at the level of mRNA and protein, still remain to be answered. 
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Kidney stones

Urolithiasis or kidney stone disease (KSD) is a 
health condition that is rarely life-threatening, but has 
severe morbidity with a potential lifetime risk for up 
to 13 % of the general population. In most cases, 
kidney stones [mostly calcium (Ca2+) salts] start to 
build up in adults when the skeleton is fully formed 
and the amount of excreted Ca2+ rises, e.g. when a 
large amount of Ca2+ and/or other metabolites is 

excreted in a small volume of urine because of the 
physiological need to conserve water (1). The onset 
of urolithiasis usually follows the ingestion and/or 
production of high amounts of main stone-forming 
compounds, such as oxalate. However, while the 
ingestion of oxalate-rich food is easily preventable, 
other urolithiasis-associated factors are more or less 
veiled and include various genetic mutations that alter 
general metabolism and homeostasis (2). In addition, 
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some well-known systemic disorders, such as obesity 
or type 2 diabetes mellitus, signifi cantly increase the 
incidence of urolithiasis (3).

The crucial moment in the pathophysiology of 
kidney stones is the formation of crystals in the tubular 
fl uid or urine. Crystallisation occurs when the crystal-
forming materials, such as calcium oxalate (CaOx), 
calcium phosphate (CaP) or uric acid reach their upper 
metastable limits, which result in fi rst solid phase 
precipitations, then grow, aggregate, and fi nally form 
stones (4). All people tend to develop these crystals. 
However, populations prone to disease have larger 
and coarser crystals, leading to haematuria, pain, and, 
if not diagnosed on time, formation of sand-like 
material, gravel, and stones. These stones are basically 
crystals embedded in protein complexes. The most 
abundant are stones made of CaOx monohydrate or 
dehydrate, which are more or less mixed with apatite 
(phosphate-based minerals), brushite (CaP dihydrate), 
or urate (uric acid). Rare and uncommon stones are 
predominantly constituted of CaP, cystine, struvite 
(ammonium magnesium phosphate), ammonium salts, 
and sometimes therapeutic drugs (5). Over 70 
compounds were identifi ed in a study on >10,500 
stones; CaOx was the predominant compound present 
in ~87 % of cases, followed by CaP (~80 %) and 
purines (~19 %) (6). In another study (7), approx. 
70,000 stones were analyzed during a 10-year period 
and nearly 80 % were built from CaOx and/or brushite, 
~7 % mainly from carbonate and various apatites, 
~5 % from urate, and ~1 % from cystine. These data 
indicate that elevating the concentrations of certain 
compounds in urine can trigger the onset of KSD.

Although it has been proposed that hyperoxaluria 
could be signifi cantly more important for the formation 
of CaOx stones than hypercalciuria (8), others have 
concluded that oxalate is most likely a less important 
contributor under physiological conditions, because 
oxalate secretion is relatively small compared to the 
secretion of calcium (5). However, it has been 
established that rises in urine oxalate concentrations 
elevate the potential for stone formation (5). Recent 
studies have deemed oxalate and Ca2+ equally 
responsible for forming CaOx stones (9). Along with 
urine Ca2+ and oxalate levels, urine volume also plays 
an important role in the onset of CaOx supersaturation. 
While the majority of affected patients show no signs 
of metabolic disorders that could lead to CaOx 
supersaturation (idiopathic stone formers), others 
suffer from hyperparathyroidism or other Ca2+-related 

metabolic disorders, infl ammatory bowel disease, or 
inherited disorders of oxalate metabolism (10).

Sources of oxalate in the organism

As shown schematically in Figure 1, oxalate in the 
mammalian body originates from two sources. Most 
of body oxalate is a metabolic end-product generated 
largely in the liver and represents 85 % to 90 % of the 

Figure 1  Pathways of oxalate handling in the mammalian body. 
In physiological conditions, oxalate is partially 
absorbed from food (exogenous oxalate) in 
gastrointestinal tract (GIT) and largely produced by 
metabolism in the liver (endogenous oxalate). Oxalate 
in food is absorbed in a minor proportion (2 % to 10 
%), whereas most (90 % to 98 %) is used up as an 
energy source by the intestinal bacterial or eliminated 
in feces. A minor proportion of endogenous oxalate in 
hepatocytes is eliminated by secretion in bile. Both 
endogenous and exogenous oxalate contributes to total 
blood oxalate, 85 % to 90 % being from endogenous 
and 10 % to 15 % from exogenous sources. Most blood 
oxalate is removed from the organism, largely (90 % 
to 95 %) by excretion (ultrafi ltration and secretion) 
in the kidneys, and the rest (5 % to 10 %) by secretion 
in intestine. A minor proportion returns to the 
hepatocytes and thus continuously recycles by 
enterohepatic circulation. This general pattern is 
slightly modulated during elevated oxalate 
concentration in blood, and is signifi cantly changed 
during chronic renal failure. When the oxalate 
concentration is increased, proximal tubule epithelium 
actively transports oxalate from blood into the tubule 
fl uid, thus increasing the amount of excreted oxalate. 
On the other side, during chronic renal failure, the 
glomerular filtration rate is reduced, and the 
expression of oxalate transporters in proximal tubules 
is downregulated, resulting in diminished elimination 
of oxalate via urine. As a compensation, the intestines 
become the site of elevated oxalate secretion and loss 
via feces. Modifi ed from (11, 12, 13).
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total oxalate circulating in blood (endogenous oxalate). 
An unknown proportion of the liver-produced oxalate 
is removed via bile secretion. The remainder (10 % to 
15 %) of blood oxalate (exogenous oxalate) originates 
from the absorption of food in the gastrointestinal tract 
(11-13). The ratio between liver-generated and 
absorption-related sources depends on oxalate content 
in ingested food (11). Both sources have a potentially 
important role in increasing oxalate concentrations in 
plasma and urine. The bulk (90 % to 95 %) of 
circulating oxalate is ultimately excreted by the 
kidneys, whereas some 5 % to 10 % of blood oxalate 
is excreted in the terminal parts of the small intestine 
and colon.

Only a small part of the total amount of oxalate in 
food (2 % to 10 %) is absorbed (which, however, 
contributes to 10 % to 15 % of the total blood oxalate), 
whereas the bulk (90 % to 98 %) is retained in the 
intestine. To determine the food-related oxalate intake, 
various foodstuffs have been tested for oxalate content. 
Oxalate is present in different plant parts and in 
different quantities, the highest content being 15 % to 
20 % of plant total dry weight (14). Spinach and other 
leafy vegetables are among the leading plants in this 
respect, with varying concentrations of oxalate as the 
plant matures. Chocolate, tea, vegetable juice, as well 
as cranberry and orange juices, were determined 
among the other notable oxalate sources. However, 
only spinach and other leafy vegetables are capable 
of actually inducing hyperoxaluria and, potentially, 
KSD (15-17). Certain spices can also be a high source 
of oxalate, particularly cinnamon and turmeric, both 
of which are often recommended as healthy 
supplements that benefi t the organism. Although both 
are rich in oxalate, due to different ratios of soluble 
and non-soluble oxalate, only turmeric signifi cantly 
increases urine oxalate and thus represents a potential 
risk factor for urolithiasis (18). When comparing food 
consumption with regard to stone formers and non-
formers, it has been established that stone formers 
consume signifi cantly higher amounts of proteins (of 
both plant and animal origin) and purines (19). 

The bulk of oxalate absorption, which can be 
modulated by Ca2+, Mg2+, and fi bers in ingested food, 
occurs in proximal parts of the digestive tract 1 h to 
8 h after ingestion (20-22), with two distinct peaks at 
40 min and 120 min (13). In humans, the daily oxalate 
intake reportedly ranges between 44 mg per day and 
352 mg per day, with an average of 130 mg to 152 mg 
per day (23, 24). However, the intestinal absorption 
of oxalate does not follow the ingested amount of this 

compound linearly; the highest ingestion/absorption 
ratio takes place at an ingested dose of 50 mg per day, 
while at higher doses (up to 250 mg per day), the 
overall absorption is higher but the ingestion/
absorption ratio signifi cantly lower (25). 

Exogenous oxalate has long been assumed to 
signifi cantly contribute to hyperoxaluria. However, 
the current opinion is that hyperoxaluria is the result 
of a combination of increases in both the endogenous 
production and intestinal absorption of oxalate (21). 
Some studies have indicated that exogenous oxalate 
does not play any signifi cant role in stone formation. 
For instance, Tiselius et al. (26) found no signifi cant 
difference in urine excretion of 14C-oxalate between 
healthy patients and patients suffering from “idiopathic” 
KSD. However, patients with ileocecal resection and 
a jejunoileal bypass showed higher intestinal 
absorption and urine excretion of oxalate, indicating 
that oxalate absorption does not dependent solely on 
the amount ingested. These differences in oxalate 
absorption could be due to the action of the oxalate-
degrading gram negative bacteria Oxalobacter 
formigenes (O. formigenes), originally discovered in 
the rumen of cattle (27). Consequently, studies on 
cultured bacteria obtained from human feces were 
conducted, indicating that, while faecal bacteria from 
healthy patients degraded oxalate in rates of 0.6 μmol 
g-1 h-1 to 4.8 μmol g-1 h-1, bacteria obtained from 
patients with a jejunoileal bypass had signifi cantly 
lower rates, i.e. ≤ 0.006 μmol g-1 h-1, thus proving that 
oxalate degradation by these bacteria could be a key 
factor in limiting oxalate absorption by contributing 
to its degradation prior to absorption (28). The 
importance of these bacteria for oxalate degradation 
was further demonstrated in a study on guinea pigs 
(29), where the control group and the group adapted 
to higher oxalate intake were injected with increasing 
amounts of 14C-oxalate into the cecum. The oxalate-
adapted group excreted ~2 % of the radiolabeled 
oxalate in the urine, whereas the control animals 
excreted much higher amounts of oxalate at lower 
doses of 14C-oxalate, but could not survive higher 
doses. It was also demonstrated that the application 
of antibiotics in oxalate-adapted animals increased the 
rate of oxalate excretion in urine. Recent fi ndings have 
also indicated a benefi cial role for these bacteria in 
preventing recurrent oxalate stones; individuals who 
had been colonized with O. formigenes had a ~70 % 
reduced chance to develop KSD (30). 

The ingestion of Ca2+ has long been assumed to be 
a limiting factor for oxalate absorption and/or 
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excretion. A negative correlation was established 
between ingested Ca2+ and absorption of ingested 
oxalate by demonstrating that a reduction in the 
amount of ingested Ca2+ promoted the absorption of 
oxalate (31), and vice versa, higher concentrations of 
Ca2+ in food reduced the absorption of oxalate (23, 25, 
32). Ca2+ and oxalate are largely absorbed separately, 
but they can also be absorbed together in the form of 
the small and neutral salt, CaOx, as already shown in 
rats (33). Carbonate, citrate, and malate calcium salts 
in food have similar effects to Ca2+. In their presence, 
the absorption of oxalate signifi cantly reduced, while 
the levels of endogenous oxalate remained the same 
(34). In addition to Ca2+, Mg2+ was also proven to 
modulate oxalate absorption in humans; the control 
group absorbed ~14 % of the ingested oxalate, while 
the group consuming calcium carbonate and magnesium 
oxide absorbed ~5 % and ~8 % of the ingested oxalate 
(35). In contrast, Mg2+ did not have a major impact on 
urinary oxalate excretion (23). 

Bile salts can directly infl uence the amount of 
absorbed oxalate in the intestine, and their effect 
exhibits certain segmental and species variations. In 
rats, a single pass infusion of 10 mmol L-1 taurocholate 
(main salt in rat bile) decreased oxalate absorption in 
the jejunum and colon, while absorption in the ileum 
remained unchanged (36). The opposite was found for 
humans; small doses of chenodeoxycholic acid had no 
effect on oxalate absorption, while higher doses (up to 
2 g per day) increased both intestinal oxalate absorption 
and urine excretion (37). Bile acids/salts apparently 
inhibit precipitation of CaOx in vitro (38) and therefore 
change the ratio between free Ca2+, oxalate, and CaOx 
complexes in the intestine, which may affect the levels 
of oxalate in plasma and urine. However, recent studies 
have cleared the dietary intake of oxalate as a major 
risk factor for urolithiasis, thus granting exogenous 
oxalate only a limited role in the possible formation 
of “idiopathic” oxalate stones (39).

Endogenous oxalate is an end-product of liver 
metabolism. There is no evidence of subsequent 
anabolic or catabolic oxalate conversion in the 
mammalian organism (14). The pathways of the 
metabolic conversion of various oxalate precursors 
into oxalate in hepatocytes are shown in Figure 2. 
Some of these metabolic processes take place in 
peroxisomes and some in the cell cytoplasm. 
Endogenous oxalate derives from two main sources: 
ascorbic acid and glyoxylate. Although ascorbic acid 
accounts for ~30 % of metabolically generated and 
excreted oxalate, its exact metabolic pathway is still 

unknown. The bulk of oxalate production comes from 
glyoxylate oxidation, with glycolate as the main source 
(40). These metabolic reactions are catalysed by 
several key enzymes, including alcohol dehydrogenase 
1 (ADH-1), lactate dehydrogenase (LDH), hydroxyacid 
oxidase 1 (HAO-1), xantine oxidase (XO), alanine-
glyoxylate aminotransferase (AGAT), and glyoxylate 
reductase (GRHPR). Malfunctions in the activities or 
defi cient expression of these enzymes can change the 
metabolic conversion of various oxalate precursors 
(14, 41, 42). Several mutations are known to directly 
infl uence oxalate producing pathways and signifi cantly 
contribute to hyperoxalemia and hyperoxaluria. 
Mutations in the gene encoding AGAT misdirect this 
enzyme from peroxisomes into mitochondria. This 
prevents the conversion of glyoxylate to alanine and 
enables its conversion to oxalate in toto (43). In 
addition to ascorbic acid and glyoxylate, other 
compounds, such as various amino acids (tryptophan, 
phenylalanine, tyrosine), creatinine, purines, and even 
glucose or other carbohydrates, can also serve as 
oxalate precursors (14). Various conditions infl uence 
and regulate the pathways of oxalate synthesis. One 
important parameter is intracellular pH, which affects 
the activity of certain key enzymes. For example, the 
activity of glycolate oxidase (HAO-1) is pH sensitive, 
being higher at pH 7.7 than at pH 8.3 (44), and even 
higher in isolated peroxisomes at pH from 6 to 7 (40), 
which corresponds to physiological pH in hepatocytes 
at ~7.1 (45). 

Formation of oxalate crystals and onset of KSD 

When the levels of oxalate and other factors in the 
urinary system reach the upper metastable limits that 
enable the formation of crystals, additional prerequisits 
seem to be needed before stones start to form. Damage 
to the cell membranes of renal tubules is one of the 
most important factors initiating stone formation. 
Given the fact that the growth time  for a crystal to 
reach an obstructing diameter of ~200 μm is at least 
1.5 h (46), it is highly unlikely that a crystal would 
attach to a healthy tubule with unobstructed urine fl ow 
(47, 48). A crystal is more likely to attach and obstruct 
the urine fl ow if the primary injury is located in the 
anatomically narrow part of the tubule (46, 48). 
Experiments in vitro, such as the one with MDCK 
cells (Madin-Darby canine kidney; cells with 
properties of distal tubule epithelial cells) (49), 
provided support for this theory. When CaOx 
monohydrate crystals were administered in healthy 
cell cultures, no crystals were found attached to the 
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cell surface. However, after damaging the monolayer 
by scraping, crystal adhesion was observed in cells 
surrounding the wound but not in healthy (undamaged) 
parts of the culture. After the wound had repaired, the 
healed monolayer showed no attached crystals. 
However, experimental models in vitro often differ 
from in vivo conditions, and the data from different 
experimental models probably paint a more accurate 
picture of what actually does occur in the mammalian 
kidneys. In in vitro models, it is important to use whole 
urine since samples after urine fractionation were 
found by some studies to inhibit the attachment of 
CaOx monohydrate crystals to MDCK cells (49). 
Furthermore, in studying optimal conditions for 
inducing urolithiasis in vitro, most experimental 
protocols have used very high doses of relevant 
compounds, whereas in experimental models of 
urolithiasis in rats in vivo, low doses of possible 
inducers were deliberately used in order to generate 
situations relevant for patients through their lifetime. 
In one such model, a low dose of ethylene glycol (EG, 
0.5 % in water) was applied to rats p.o. without or 
with three different doses of the nephrotoxin 
hexachloro-1,3-butadiene (HCBD; 10 mg kg-1, 
25 mg kg-1, and 50 mg kg-1, i.p.); mild oxaluria was 
observed in all four conditions, but crystaluria and 
apoptosis were demonstrated only in rats treated with 
both EG and HCBD. In addition, crystaluria also 
appeared dose-dependent after injecting HCBD alone 
and then abated with time, indicating that, in addition 
to oxalate, the formation of urinary crystals also 
requires a tubular damaging agent (50).

Oxalate crystals, composed of KOx or CaOx 
monohydrate, can directly damage MDCK cells in a 
culture. The presence of crystals caused a loss of cells 
and elevated levels of cellular enzymes in the medium. 
Moreover, when both kinds of oxalate crystals were 
used together, they exhibited synergic action in 
damaging cells (51). Further experiments on MDCK 
and LLC-PK1 (pig kidney epithelial cells with 
properties of proximal tubule epithelial cells) 
monolayers showed that crystal-related cell damage 
is associated with an increased production of free 
radicals and cell death. These phenomena were related 
to oxalate concentration, whereas free radical 
scavenging and degrading enzymes such as catalase 
(CAT) and superoxide dismutase (SOD) provided 
strong protection from the injury (52, 53). In 
experiments with fresh rat urothelium, crystals formed 
at the site of the damaged superfi cial cells in a free 
radical-rich environment, whereas administration of 

antioxidants (mannitol or ascorbic acid) abolished 
crystal formation (54). Hyperoxaluria was also shown 
to induce the production of free radicals in rat kidneys 
in vivo (55);. This effect was most notable in the early 
stages of urolithiasis and was not uniformly distributed 
throughout the kidney, possibly because of the non-
uniform generation of free radicals and distribution 
of antioxidants in the tissue (56). Similar changes in 
the tissue distribution of free radicals and antioxidant 
enzymes were also observed in the later stages of 
urolithiasis, which could be explained by the 
supporting action of the infl ammatory response and 
low activity of antioxidant enzymes (57). After 
inducing chronic hyperoxaluria in rats by adding 
0.75 % EG to drinking water, in addition to damaging 
cell membranes, the oxalate-driven enhanced 
production of free radicals impaired kidney function 
by decreasing renal blood flow and glomerular 
fi ltration rate. The damaging effects of oxalate were 
by pretreating animals with SOD, which proved the 
crucial role or free radicals in the initial phases of KSD 
(58). These data suggest that oxalate by itself could 
start the formation of kidney stones. 

In summary, in animal kidneys, oxalate is capable 
of damaging the apical membrane of proximal tubule 
cells and impairing urine fl ow by decreasing kidney 
functions via promoting the production of free 
radicals. In human kidneys, however, the situation 
could be somewhat different. Limited studies have 
shown that markers of oxidative stress and renal cell 
injury did not increase even after an intense load with 
oxalate (22). 

In the rat kidney cell line NRK52E, treatment with 
oxalate and crystals of CaOx monohydrate or brushite 
caused an elevated concentration of free radicals and 
increased mRNA and protein expression of monocyte 
chemoattractant protein 1 (MCP-1), a local mediator 
of infl ammatory response. Pretreatment with catalase 
and diphenylene-iodium reduced the expression of 
MCP-1 by scavenging free radicals, thus suggesting 
that the initial upregulation of MCP-1 was rather a 
response to the accumulation of free radicals than to 
the accumulation of oxalate, brushite, or CaOx 
monohydrate (59-61). In studying the damaging 
effects of oxalate crystals on membrane integrity, 
various molecules were found to inhibit the binding 
of CaOx monohydrate to the cell surface. A variety of 
compounds (Table 1) were found to diminish the 
binding capacity of CaOx monohydrate crystals to 
BSC-1 (African green monkey kidney epithelial cells) 
or MDCK cell lines, thus preventing damage (62). 
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Recently, the crystal adhesion inhibitor protein (CAI) 
was described. In the BSC-1 cell line, it blocked the 
adhesion of CaOx monohydrate to the cell surface. 
This protein was also detected in human urine (63). 
Furthermore, the glycoprotein osteopontin, which is 
found in urine, can inhibit all stages of the stone-
forming process. In addition, osteopontin can also 
direct crystallisation toward the CaOx dihydrate rather 
than the CaOx monohydrate, which is of signifi cance 
because in in vitro conditions, 50 % more CaOx 
monohydrate is found attached to rat inner medullary 
collecting duct cells than CaOx dihydrate (2, 64). The 
expression of osteopontin increased in a dose-
dependent manner in rats treated with EG. In the 
control kidneys, osteopontin was expressed in the thin 
limbs of the loop of Henle and papillary surface 
epithelium; hyperoxaluria upregulated its expression, 
while the presence of CaOx crystals induced its 
expression in the entire nephron (65, 66). These data 
suggested that osteopontin may be one of the key in 
vivo protectors from oxalate stone formation. Other 
proteins, like nephrocalcin, prothrombin fragment 1, 
and calgranulin, inhibited aggregation and 
crystallisation of oxalate complexes in urine, and may 
have prevented the initial steps in stone formation (2, 
67). In healthy humans, Tamm-Horsfall protein 
exhibited the same effect as nephrocalcin and 
prothrombin fragment 1. However, the Tamm-Horsfall 

protein obtained from recurrent stone formers did not 
modulate the rate of nucleation, while the aggregation 
of the crystals was even promoted and not inhibited 
(68). In addition to these specifi c proteins, urine 
proteins in general can be incorporated in the stone 
matrix dose-dependently, thus enhancing the 
degradation or dissolution of stones (69). Furthermore, 
some polypeptides can display similar effects on CaOx 
crystallisation. One is urinary bikunin, an integral part 
of the inter-α-inhibitor (ITI) protein. The expression 
of bikunin mRNA and protein and the expression of 
ITI protein in rat kidneys showed a time-dependent 
increase following EG treatment (70, 71).

Compounds and other factors that modulate urine 
oxalate concentration and urolithiasis

Various compounds, pathophysiological conditions, 
and even intestinal bacterial fl ora are known to either 
promote or inhibit the onset and severity of oxalate 
urolithiasis. They are summarized in Table 1. Some 
vitamins are known to infl uence the incidence and 
severity of oxalate crystal formation in kidneys. 
Vitamin E, with its strong antioxidant properties was 
shown to prevent cyclosporine A-induced hyperoxaluria 
in rats (72). After long–term dietary administration, 
this vitamin also acted benefi cially in aging kidneys 
of old male rats. The markers of lipid peroxidation 
were elevated and the vitamin E-enriched diet lowered 

Table 1  Compounds and conditions that affect the onset and severity of oxalate urolithiasis (Collected from the literature cited 
in the text)

Compounds or 
conditions Promoters of urolithiasis Inhibitors of urolithiasis

Oxalate precursors from 
food

glyoxylate, galactose, lactose, 
tryptophan, phenylalanine, 
tyrosine, creatinine, purines 

Vitamins vitamin C (oxalate precursor)
vitamins A, C and E (scavengers of free radicals), 
vitamin B6

Various compounds
heparin, chondroitin sulfate, heparan sulfate, 
hyaluronic acid, polyapartic acid, polyglutamic acid, 
dextran sulfate, citrate

Specifi c proteins
crystal adhesion inhibitor protein, osteopontin, 
nephrocalcin, Tamm-Horsfall protein, prothrombin 
fragment 1

Mediators of the 
infl ammatory response

monocyte chemoattractant protein (a response to free 
radicals)

Compounds affecting 
free radicals

potassium oxalate monohydrate, 
calcium oxalate monohydrate 
(promoters of free radicals)

catalase, superoxide dismutase, manitol (free radical 
scavengers)

Physical infl uences trauma and membrane injury
Microorganisms Oxalobacter formigenes
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these markers, increased glomerular fi ltration rate by 
~50 %, and returned the renal vascular resistance to 
the level found in young animals (73), thus indirectly 
proving the benefi cial role of this vitamin in oxalate 
urolithiasis. Recent studies have provided a more 
focused correlation between the oxalate-induced 
production of free radicals and effects of vitamin E. In 
rats fed with a vitamin E-defi cient diet accompanied 
by EG treatment, the formation of CaOx crystals 
intensified and their volume in urinary sediment 
increased causing atrophy and dilatation of tubules as 
well as interstitial cellular infi ltration. The administration 
of vitamin E ameliorated these effects, most likely due 
to its anti-oxidative properties (74, 75). 

Vitamin B6 defi ciency increased the excretion of 
endogenous oxalate, which was further enhanced by 
adding glycine, deoxypyridoxine, and isonicotic acid 
hydrazide to the diet (76). Vitamin B6 was also helpful 
in reducing elevated concentrations of urine oxalate 
following ingestion of tryptophan (77). While vitamin 
E inhibited the formation of urinary stones via 
inhibiting the production of free radicals, it seems that 
vitamin B6 can affect metabolic pathways involved 
in the generation of oxalate. The defi ciency of vitamin 
B6 strongly promoted an abundance of urine oxalate 
when the animals were treated with i.p. injections of 
glycolic acid, ethanolamine or EG but not glyoxylic 
acid, indicating that vitamin B6 could impact the 
metabolic pathways of oxalate production (78). 
However, vitamin B6 apparently has a role in lipid 
peroxidation as well. Rats fed with a vitamin B6-
defi cient diet exhibited higher susceptibility of kidneys 
to lipid peroxidation and showed higher contents of 
lipid peroxide (79). This indicated that vitamin B6, 
besides inhibiting oxalate metabolism, can also protect 
kidneys from oxalate damaging effects by inhibiting 
the production of free radicals. A clinical study 
involving 85,000 female participants showed that 
vitamin B6 could indeed reduce oxalate urolithiasis, 
but only to a certain extent. The follow-up survey 14 
years later revealed a lower incidence of oxalate 
urolithiasis in the group taking >40 mg vitamin B6 
per day compared to the group taking <3 mg vitamin 
B6 per day (80). Vitamin B6, however, can in certain 
conditions be harmful. If the food contains an ample 
amount (5.2 %) of hydroxyproline, oxalate excretion 
will increase as the supplementary doses of vitamin 
B6 increase (81). This fi nding supports the observation 
of a higher incidence of stones in the meat-consuming 
individuals (19). A greater amount of consumed meat 
means more consumed collagen, in which 
hydroxyproline is one of the main components. 

Vitamin A could also play a role in oxalate 
lithogenesis. After inducing oxalate urolithiasis, rats 
pretreated with vitamin A had smaller oxalate deposits 
in kidneys than controls. In contrast, after urolithiasis 
had already developed, later treatment with vitamin 
A had no benefi cial effect (82). 

However, not all vitamins follow a beneficial 
pattern in preventing oxalate urolithiasis. Vitamin C 
most likely has an adverse effect (83). Despite its 
numerous positive roles in the metabolism, vitamin C 
serves as an oxalate precursor because it is partially 
metabolized into oxalate. Increased urinary oxalate 
excretion was observed in humans that consumed 
1000 mg ascorbic acid per day (84). Similarly, the 
same study that reported a benefi cial role for vitamin 
B6 in a large number of human participants failed to 
fi nd any signifi cant effect of vitamin C at doses from 
250 mg per day to 1500 mg per day (80). Recent 
studies have suggested that a more individual approach 
should be taken in testing the consumption of vitamin 
C during oxalate urolithiasis, since the participants, 
being stone-formers or not, either did not respond to 
the treatment (60 %) or responded with an increased 
excretion of urinary oxalate (84). In contrast to the 
effect of vitamin C, which is metabolised to oxalate, 
when used in an experimental model on living 
epithelium, vitamin C can abolish crystal formation 
in a free radical-rich environment, most likely due to 
its antioxidant properties (54).

Some sugars also infl uence oxalate metabolism at 
various levels of effi ciency and intensity. Rats fed with 
galactose and lactose showed a higher concentration 
of endogenous oxalate in their urine than rats fed with 
sucrose, fructose or glucose. Although the metabolism 
of both glucose and galactose eventually intersects at 
glycolaldehyde, an intermediary compound in the 
metabolic production of oxalate, galactose metabolism 
largely takes a different route, via galactonic acid 
formation (85).

Citrate is known to have certain infl uence on the 
formation of oxalate kidney stones. The urine of stone-
formers contains signifi cantly less citrate than that of 
stone non-formers. Furthermore, urine in males has 
signifi cantly less citrate in comparsion to females (86, 
87). Hypocitraturia due to malabsorption or other 
reasons may be one of the predisposing factors for 
crystallization and urolithiasis (88, 89). Citrate 
apparently inhibits saturation, crystallisation, and 
further growth of already formed CaOx and CaP 
crystals (90, 91). Furthermore, citrate can promote 
inhibitory activity in the Tamm-Horsfall protein from 
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healthy individuals or even reverse the protective 
actions of this protein in stone formers (68). Various 
compounds that inhibit or promote the formation of 
oxalate stones are listed in Table 1.

Oxalate-handling transporters and their role in 
hyperoxaluria and KSD

The Slc26 family of multifunctional anion 
exchanger proteins is believed to handle oxalate in 
mammalian organs (92-95) and a few specific 
members of this family may play a key role in the 
aetiology of hyperoxaluria and oxalate urolithiasis. 
Three organs, the intestine as an absorbing organ, liver 
as a metabolic organ, and kidneys as the main secretory 
organ, are major players in handling oxalate in the 
organism. Each has one or more relevant transporter 
from the Slc26 family expressed in the epithelial cell 
membrane that contributes to the transmembrane 
movement of oxalate. The thus far defi ned and more 
or less functionally characterized transporters and their 
organ localization are listed in Table 2. 

During intestinal absorption, oxalate in food can 
cross the intestinal wall paracellularly and/or 
transcellularly. The paracellular fl ux occurs through 
simple diffusion; dependent on the oxalate gradient 
orientation, this process can function in both directions: 
from lumen to blood or from blood to lumen. However, 
in vivo models are always more complex since the 

concentration and electrical (electrochemical) 
gradients are permanently present, whereas the 
paracellular path is more or less limited. The 
transcellular path is mediated by specifi c transporters 
which are located in the epithelial cell membranes 
(92). Oxalate absorption in the human intestine starts 
very soon after ingestion. The rise in excretion by the 
kidneys is evident as soon as 20 min after oxalate 
ingestion and has two distinct peaks, at 40 min and 
180 min after ingestion (13). Since the gastro-ileal 
passing time in healthy humans is approximately 10 h, 
it can be concluded that absorption starts in the 
stomach and reaches its maximum in the small 
intestine (13, 20). A few studies have shown that the 
stomach could be an important locus of oxalate 
absorption. The fi rst peak of oxalate absorption could 
not be recorded in patients with a gastrectomy (12, 
13, 93). Due to the tight epithelium, oxalate transport 
in the stomach is most likely transcellular (93). 
Immunocytochemical fi ndings of the presence of an 
oxalate transporter, sulfate anion (SO4

2-) transporter 
Sat-1 (Slc26a1), in the oxyntic cells of the rat stomachs 
support claims in favour of this type of transport. 
However, the staining was not found in the cell 
membrane, but rather in certain intracellular, non-
endosomal organelles (96). In the mouse stomach, in 
addition to Sat-1, another oxalate transporter, chloride/
formate exchanger CFEX (Slc26a6), was demonstrated 

Table 2 Transporters that contribute to oxalate handling in the organism 

Name Alias Species Organ expression Substrates

SLC26A1 SAT-1
rat, mouse, 
human

kidney, liver, 
cecum, heart, brain, muscle

sulfate, oxalate, 
bicarbonate, glyoxylate

SLC26A2 DTDST
rat, mouse, 
human

Duodenum, jejunum, ileum, 
colon, kidney

oxalate

SLC26A3 DRA
rat, mouse, 
rabbit, human

duodenum, jejunum, ileum, 
cecum

sulfate, oxalate, 
bicarbonate, chloride

SLC26A6 CFEX/PAT-1 mouse, human

kidney, pancreas, 
duodenum, jejunum, ileum, 
colon, heart, 
muscle, placenta

sulfate, oxalate, 
bicarbonate, chloride, formate, 
hydroxyl-ion

SLC26A7 - Human
stomach, kidney, 
placenta, testis 

sulfate, oxalate, 
chloride

SLC26A8 TAT-1 Human kidney, testis
sulfate, oxalate, 
chloride

SLC26A9 - Human
lungs, stomach, 
kidney

chloride, bicarbonate, hydroxyl-ion
oxalate?

SAT-1, Sulfate anion transporter-1; DTDST, Diastrophic dysplasia sulfate transporter; DRA, Down regulated in adenoma; 
CFEX, Chloride/formate exchanger; PAT-1, Putative anion transporter 1; TAT-1, Testis anion transporter 1. Data collected 
from the literature (91, 95, 96, 97, 100, 112, 116, 121, 123, 128, 153, and 188).
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in parietal cells at the level of both mRNA (97, 98) 
and protein, but once more in an intracellular 
compartment (99). Thus, the only plausible transporter 
that may facilitate oxalate transport across the stomach 
epithelium could be the SO4

2-/Cl-/oxalate exchanger 
Slc26a7. In the mouse stomach, this transporter has 
been localized to the parietal cell basolateral membrane 
(100). 

Although earlier studies indicated that oxalate 
absorption occurs in the initial parts of the 
gastrointestinal tract (13, 20), patients who developed 
hyperoxaluria following a jejuno-ileal bypass exhibited 
major absorption in the colon (101), thus indicating 
that, at least in certain conditions, oxalate can also be 
absorbed in the distal parts of the intestine. Evidence 
for transcellular absorption of oxalate in the intestine 
with regard to other anions came from observations 
that oxalate and Cl- share a common anion transport 
system in the rabbit ileum and colon, which was 
inhibited by the stilbene derivatives SITS and DIDS 
(102, 103). In the rabbit colon, which is an important 
site for oxalate uptake and/or excretion, oxalate 
transport is mediated by Na+-, Cl--, and HCO3

--
dependent pathways (104, 105). In mice, a DIDS-
sensitive Cl-/HCO3

- exchanger was identifi ed as the 
Cl-/formate exchanger CFEX [putative anion transporter 
1 (PAT-1); Slc26a6], which can also can function as 
an oxalate/formate exchanger with higher affi nity for 
oxalate than for formate (97, 98). A strong expression 
of Slc26a6 mRNA was detected in mouse duodenum, 
jejunum, and ileum, while the cecum and colon showed 
only a slight expression (97). Comparable fi ndings 
w e r e  o b t a i n e d  b y  We s t e r n  b l o t t i n g  a n d 

immunohistochemistry in the mouse duodenum, where 
the apical region of the absorptive cells was stained 
positive for Slc26a6. The importance of Slc26a6 was 
supported by the data from knock-out (KO) mice 
lacking the coding gene for CFEX, which exhibited a 
strongly diminished oxalate transport in both intestine 
and kidneys (106-109). These studies further revealed 
that ileal oxalate transport in wild type (WT) mice was 
mainly secretory, whereas in CFEX KO mice, this 
transport shifted towards absorption, indicating that 
the usual function of CFEX in the intestine is mainly 
secretory. Furthermore, following addition of DIDS, 
ileal oxalate secretion in WT mice switched to oxalate 
absorption, while in KO mice, DIDS had no signifi cant 
effect, indicating that the oxalate absorption pathway 
in the intestine was not mediated by a DIDS-sensitive 
process (107). These data are in accordance with earlier 
results in rats and rabbits, which showed that the small 
intestine is mainly an oxalate secretory organ with high 
CFEX expression, while the colon is predominantly 
an oxalate absorptive organ (110, 111) with low CFEX 
expression. In addition to CFEX, other members of 
the Slc26 family are localized in the intestine. Sat-1 
(Slc26a1) is usually associated with kidneys and liver, 
but recently its mRNA expression was also detected 
in mouse cecum (112) and human small intestine and 
colon (113). However, although it is presumed that 
Sat-1 is localized in the BLM of intestinal epithelial 
cells (114, 115), in rats an anti-Sat-1 antibody clearly 
labeled the Sat-1 protein in specifi c membrane domains 
of hepatocytes and proximal tubules (116-118), 
whereas in the intestine, the same antibody stained 
intracellular organelles, possibly mitochondria, with 

Figure 2  Oxalate-related metabolic pathways. Metabolic pathways and critical enzymes that catalyze the respective steps in 
conversion of various precursors to oxalate are shown. ADH-1, alcohol dehydrogenase 1; ALDH, aldehyde 
dehydrogenase; AOX, aldehyde oxidase; LDH, lactate dehydrogense; XO, xantine oxidase; GOX, glycine oxidase; 
AGAT, alanine glyoxylate aminotransferase; HAO-1, hydroxyacid oxidase 1. Modifi ed from (11, 14).
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the following pattern of staining intensity: duodenum 
< jejunum < ileum < colon (96, 119). Furthermore, a 
recent study on mouse duodenum by Ko et al. (120) 
questioned the role of Sat-1 in transporting oxalate, 
since the active oxalate secretion in this intestinal 
segment was not reduced in Sat1 KO mice.

Another transporter from the same family is the 
protein known as “Down-Regulated in Adenoma” 
[DRA (SLC26A3)/Dra (Slc26a3)], which mediates 
Na+-independent SO4

2- and oxalate uptake in mouse 
intestine (121). In transfected Sf9 insect cells (originate 
from insect ovarian tissue), human DRA mediated the 
DIDS-sensitive uptake of SO4

2- and oxalate (122). In 
mice, Dra mRNA was only slightly expressed in the 
small intestine and strongly in the cecum and proximal 
colon, while in other organs the expression was below 
detection limits (121). Except for mediating SO4

2- and 
oxalate uptake, DRA appears to be a generally versatile 
anion exchanger capable of mediating Cl-/Cl-, HCO3

-/
Cl-, and Cl-/SO4

2- exchange in rats, rabbits, and humans 
with a high affi nity for Cl- (123). DRA exhibits much 
lower rates of oxalate transport than other members of 
the Slc26 family (92). However, DRA KO mice 
exhibited significantly reduced mucosa-to-serosa 
oxalate fl ux in ileum and colon when compared to WT 
mice (114, 115). Deletion of the Slc23a3 gene in 
addition to previously described disturbances in oxalate 
transport (114, 115) caused diarrhea and an increased 
expression of other ion exchangers in the intestine, 
including the sodium-proton exchanger 3 (NHE3; 
SLC9A3), H,K-ATPase (EC 3.6.3.10), and the 
amiloride-sensitive epithelial sodium channel (ENaC) 
for compensation (124). Mutations of the gene encoding 
DRA cause congenital Cl- diarrhea in humans (125). 
DRA may indirectly take part in oxalate urolithiasis by 
participating in Cl- uptake, which is an essential anion 
for oxalate extrusion via CFEX (vide infra).

Very little is known about the expression and 
function of the Diastrophic Dysplasia Sulfate 
Transporter (DTDST; SLC26A2/Slc26a2). Evidence 
suggests that this transporter should be expressed in 
the epithelial cell apical membrane of the human small 
and large intestine (114, 115, 126), but thus far its 
presence at the level of mRNA has been proven only 
in the rat intestine (114). The affi nity of DTDST for 
oxalate and its role in handling them still need 
confi rmation, but recent fi ndings suggest that this 
transporter could be responsible for the residual 
intestinal secretion of oxalate in CFEX KO mice (115, 
127, 128). The localization of various members of the 
Slc26 family along the mammalian intestine is 
depicted in Fig. 3. 

As for oxalate transport in the liver, its defi nition 
is not as vague as in the intestine. Haepatocytes are a 
major site of oxalate production in the organism. As 
a metabolic end-product, oxalate is removed from 
hepatocytes before it is excreted from the organism, 
largely via the kidneys and to minor extent via the 
intestine. The localization of oxalate transporters in 
hepatocytes and kidneys is depicted in Fig. 4. 
Hepatocytes utilize substantial SO4

2- in various 
detoxifi cation and sulfation reactions. The SO4

2-/anion 
exchange system that transports various anions 
including oxalate was demonstrated in the sinusoidal 

Figure 3  Transporters along the rodent gastrointestinal tract 
involved in oxalate handling. The localization of the 
thus far detected oxalate transporters in the apical 
(luminal, AM) and basolateral (contraluminal, BLM) 
membranes in various segments of the mammalian 
gastrointestinal tract (GIT) are shown. Unknown 
mechanisms are indicated by a question mark (?). 
Various intestinal segments exhibit various modes of 
transporter expression in the apical membrane 
resulting in different oxalate traffi cking; duodenum, 
jejunum, and ileum are the segments with high 
oxalate secretion due to relatively higher CFEX 
(Slc26a6) then DRA (Slc26a3) expression (107, 110, 
111). The opposite expression pattern of these two 
transporters (DRA > CFEX) in proximal and distal 
colon points to the absorptive role of the colon in 
oxalate traffi cking (114, 115, 121). In contrast, the 
expression of DTDST (Slc26a2) is similar in all 
intestinal segments and most likely contributes to 
very small amount of oxalate excretion (127, 128). 
In addition to sulphate, all of the described 
transporters in the apical and basolateral membrane 
(Sat-1/Slc26a1) can utilize Cl-, HCO3

- or OH- as 
substrates, depending on availability and affi nity.

Brzica H, et al. OXALATE UROLITHIASIS
Arh Hig Rada Toksikol 2013;64:609-630



619

membrane of rat hepatocytes (129). In support of these 
fi ndings, Sat-1, an exchanger of SO4

2- and an oxalate, 
was localized in rats to the hepatocyte sinusoidal 
membrane (116, 117, 130). Recent transport studies 
on Sat-1 expressing oocytes demonstrated that Sat-1 
can exchange SO4

2- or HCO3
- for oxalate in both 

directions, but the affi nity for oxalate is lower than for 
counter anions. However, due to high intracellular 
concentrations of oxalate, the exchanger most 
probably operates as an oxalate extruder in exchange 
for extracellular SO4

2- or HCO3
- (131). A limited 

amount of oxalate may be excreted into bile, possibly 
via CFEX in the bile canalicular membrane, but the 
counter anions are unknown. Our unpublished 
immunocytochemical data with an available 
commercial polyclonal antibody have indicated the 
presence of the CFEX protein in this membrane (Fig. 
4), but this fi nding awaits confi rmation with different 
antibodies by other research groups.

The Slc26 family of anion transporters is also 
responsible for handling oxalate and related anions in 
kidneys. These transporters, located in the apical as 
well as in the BLM of epithelial cells (Fig. 4), primarily 
exchange oxalate for formate HCOO- or Cl-. This way, 
they also participate in the reabsorption of Cl- and Na+ 
from the glomerular fi ltrate (92). As demonstrated in 
dogs (132), humans (133), sheep (134), and rats (135), 
the bulk of body oxalate is excreted by kidneys, 
partially via glomerular fi ltration and partially via 
active secretion in the proximal parts of the nephron. 
In addition to secreting oxalate, proximal tubules are 
also sites of limited oxalate reabsorption (135, 136), 
whereas the distal parts of a nephron are not involved 
in oxalate transport (137). Detailed studies on rat 
kidney proximal tubules indicated the presence of a 
low-affinity, high-capacity excretory system for 
o x a l a t e ,  w h i c h  c a n  b e  i n h i b i t e d  b y  p -
chloromercuribenzoic acid (PCMB), cyanide, 
indacrinone (MK-196), furosemide, and p-
aminohippurate (PAH) (137, 138). However, these 
and other studies suggested that more than one 
secretory system, with different affi nities for oxalate, 
may be responsible for oxalate handling in mammalian 
kidneys (129, 137, and 138). The studies of oxalate 
transport in rabbit kidneys indicated proximal tubules 
as the main locus of net oxalate secretion, with the 
S1/S2 and S3 segments having a dominant and minor 
role, respectively (139). Subsequent experiments 
linked the Na+-independent transport of SO4

2- and 
HCO3

-
 in the proximal tubule cell BLM (140, 141) to 

oxalate, according to which one oxalate is exchanged 

for one SO4
2- or two HCO3

- (142). A transporter with 
similar properties was fi nally cloned from rat liver. 
cDNA encoded for the ~75 kDa SO4

2- transporter, 
Sat-1 (130). The expression of rat renal sulfate 
transport systems in X. laevis oocytes proved that 
Sat-1 mediated Na+-independent SO4

2- transport in the 
proximal tubule BLM (143). Further characterization 
showed that the basolateral Sat-1 can exchange 
extracellular oxalate for intracellular SO4

2- or HCO3
-, 

where HCO3
- is constantly recycled across the BLM 

by a HCO3
-/Cl- exchanger (144). As shown in Fig. 4, 

in rat kidneys the Sat-1 protein was localized by 
immunochemical methods to the proximal tubule 
BLM (117, 118). 

Early studies on oxalate transport in rabbit kidney 
BBM indicated the presence of two distinct Cl-/
formate exchange systems. One was electroneutral, 
readily accepting Cl- and formate as substrates, 
without or with little affi nity for oxalate, and was 
strongly inhibited by furosemide and not as strongly 
by DIDS. The second electrogenic accepted oxalate, 
Cl-, and formate with high affi nity, and these anions 
were more strongly inhibited by DIDS than by 
furosemide (145, 146). Evidence for oxalate transport 
across both cell membrane domains came from in vitro 
experiments with LLC-PK1 cells. In this experimental 
model, oxalate secretion was presented by a two step 
process; the uptake of oxalate occured in exchange 
for SO4

2- or HCO3
- across the proximal tubule cell 

BLM, followed by a release of oxalate in exchange 
for SO4

2- or Cl- across the BBM (147). In rabbit renal 
BBM, both Na+-dependent and Na+-independent 
modes of oxalate transport were demonstrated, 
whereas the Na+-driven mode was almost negligible 
(148). These functional data of Na+-independent 
oxalate transport in the BBM were ultimately linked 
to CFEX. Mouse CFEX was cloned, found to mediate 
DIDS-sensitive Cl-/formate exchange (149), verifi ed 
as an ortholog of the human SLC26A6/putative anion 
transporter 1 (PAT-1), and immunochemically 
localized to the proximal tubule BBM (98, 99). Mouse 
CFEX was also shown to mediate the exchange of 
various anions (Cl-, formate, oxalate, HCO3

-, OH-, and 
SO4

2-) (150). Under optimal conditions (transport 
surveys under equal substrate concentrations), the 
oxalate uptake was more than 2-fold higher than the 
uptake of other substrates, indicating a higher affi nity 
for oxalate. Cl- seems to be the major anion in 
exchange with other anions, and this fact may play an 
important role in the aetiology of oxalate stones in 
kidneys, since Cl- is the crucial anion for CFEX-
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A part of the secreted oxalate can recycle back into 
the cell by CFEX-mediated Cl-/oxalate exchange (151, 
152). Thus, in the proximal tubules of healthy animals, 
CFEX regulates urine oxalate secretion by continuous 
recycling and partial removal from tubular fl uid. In 
CFEX KO mice, urine oxalate is ~4-fold higher than 
in wild type mice, but this is at least partially a 
consequence of the absence of CFEX-mediated 
intestinal excretion and increased ileal absorption of 
oxalate, followed by increased renal excretion via 
glomerular filtration and transporter-mediated 
secretion (107, 108). In rats, renal Sat-1 has low 
affinity for oxalate when compared to SO4

2- or 
HCO3

-, and in physiological conditions it may only 
transport insignificant amounts of oxalate. In 
hyperoxalemia (high plasma concentration of oxalate), 
however, Sat-1-mediated oxalate transport may rise 
significantly (131). Although Sat-1 exhibits low 
affi nity for oxalate, its importance was demonstrated 
in Sat-1 KO mice, which exhibited hyperoxalemia 
(due to decreased intestinal excretion), hyperoxaluria 
(due to increased glomerular fi ltration of oxalate), and 
urolithiasis [reviewed in (153)]. However, in spite of 
numerous collected data regarding the renal handling 
of oxalate, the overall oxalate transport in kidneys is 
still a question issue of debate. Up to 95 % of oxalate 
in a healthy organism is excreted via kidneys, while 
the rest is lost through intestinal excretion. In some 
pathological conditions, such as chronic renal failure 
( C R F )  d u e  t o  i n f l a m m a t o r y  p r o c e s s e s , 
glomerulosclerosis, and fi brosis, this pattern tends to 
shift in favour of intestinal excretion (91, 154). In such 
cases, the intestine take over a part of the kidney’s role 
in oxalate excretion, and 28 % to 50 % of oxalate can 
be excreted through this organ (110, 155). However, 
different parts of the intestine play different roles in 
oxalate handling. In healthy rabbits and rats, the small 
intestine exhibited an oxalate secretory fl ux and the 
colon was the main site of oxalate absorption (111), 
whereas in experimental CRF, no change in oxalate 
traffi cking was observed in the small intestine, but a 
signifi cant decrease of oxalate absorption and increase 
of its excretion was detected in the colon (105). The 
renal handling of oxalate in this pathophysiological 
condition due to a reduced fi ltration rate and active 
secretion also seems to be impaired. During CRF, the 
expression of renal Sat-1 is signifi cantly reduced, 
which means that the active excretion of oxalate via 
the proximal tubule is also impaired. In addition, 
NaS-1, an important supplier of intracellular SO4

2- for 
Sat-1-mediated oxalate transport, is also downregulated 
(156) (Figure 5.). 

Figure 4  Oxalate transporters in hepatocytes and renal 
proximal tubule cells. In physiological conditions, 
oxalate is largely produced in hepatocytes, released 
in blood, and excreted in kidneys by glomerular 
fi ltration (GF) and secretion in proximal tubules. In 
hepatocytes, oxalate is eliminated partially (unknown 
proportion) by the CFEX-mediated secretion in bile 
(counterion unknown), and largely in exchange for 
sulfate by the Sat-1-mediated transport into blood. 
As shown in immunocytochemical images, in the rat 
liver the CFEX protein (arrowheads) is localised to 
the bile canalicular membrane (our unpublished 
data), whereas the Sat-1 protein (arrows) is localized 
to the sinusoidal membrane (116, 117). In the renal 
proximal tubule cells, the process of oxalate (Ox)  
secretion starts with the basolateral Sat-1-mediated 
uptake of oxalate in exchange for reabsorbed 
sulphate (or Cl-, or HCO3

-), and fi nishes with the 
apical CFEX-mediated extrusion of oxalate into the 
tubule lumen in exchange for sulphate (or Cl-, or 
HCO3

-). As shown in immunocytochemical images, 
in the rat proximal tubule cells the Sat-1 protein 
(arrowheads) is localised to the basolateral 
membrane (117, 118), whereas the CFEX protein 
(arrows) is localised to the apical (brush-border) 
membrane (our unpublished data).

mediated Cl-/oxalate exchange in the BBM. Oxalate 
secretion in the proximal tubule cell starts with Na+-
SO4

2- co-transport, mediated by the apical NaSi-1 
(SLC13A1), which creates an outward SO4

2- gradient 
that drives Sat-1-mediated SO4

2-/oxalate exchange 
across the BLM. The internalized oxalate generates 
an outward gradient, which drives the CFEX-mediated, 
oxalate/ SO4

2- (Cl-, HCO3
-) exchange across the BBM. 
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Further experimental evidence suggests that the 
SLC26 family of transporters is not the only one 
responsible for hyperoxaluria and formation of oxalate 
kidney stones. The members of several other families 
may also contribute by transporting a variety of 
compounds that affect oxalate crystallisation or other 
steps in stone formation (Table 2). One of them is the 
sodium-phosphate cotransporter IIa (NaPi-IIa), a 
member of the transporter family SLC34 (SLC34A1/
Slc34a1). NaPi IIa KO mice developed hypercalciuria 
and deposited both CaP and CaOx crystals in their 
kidneys in contrast to WT mice, and these data stressed 
that crystallisation occured when hyperoxaluria was 
linked to high Ca2+ concentrations (157). However, 
CaP deposits can form separately from CaOx deposits 
(158). This indicates CaP deposits are not required for 
the crystallisation and deposition of CaOx, as had been 
indicated in certain in vitro experiments (158) and in 

vivo monitoring of stone-forming patients (159). 
Although it is likely that CaOx crystals can form over 
CaP plaques, especially if they are formed on a suitable 
position along the nephron, CaP plaques are not 
necessary for stone formation since patients that 
underwent an obesity-related bypass procedure formed 
CaOx stones without having CaP plaques (157, 
159).  

Another transporter indirectly tied to oxalate 
urolithiasis is a cotransporter of Na+ and dicarboxylate 
1 (NaDC-1). It is a member of the SLC13 (SLC13A2 
in humans/Slc13a2 in rodents) transporter family, 
which is localised to the proximal tubule BBM and 
mediates the co-transport (reabsorption) of Na+ and 
citrate from the ultrafi ltrate. In rats treated with EG, 
protein and mRNA expression of NaDC-1 were 
signifi cantly increased and associated with lower 
urinary citrate. Treatment with potassium citrate 
exhibited an opposite effect; it reduced the expression 
of NaDC-1 protein and mRNA and increased urinary 
citrate (160). Thus, EG treatment lowered urinary 
citrate by upregulating its transporter and reabsorption, 
which may have affected (enhanced) the rate of oxalate 
crystallisation.

Sex and species differences, effects of hormones and 
heavy metals on oxalate levels, oxalate transporters, 
and incidence of oxalate nephrolithiasis

Over the years, many studies have reported on the 
presence of sex differences in the incidence of oxalate 
kidney stones and possible role of sex hormones and 
other factors in the aetiology of oxalate urolithiasis. 
The frequency of CaOx urolithiasis in the middle aged 
population is 2 to 3 times higher in men than in 
women, whereas in the young and elderly population, 
this male-dominant prevalence is absent (161-163). 
The male-dominant urolithiasis was initially associated 
with greater body mass and body surface area, which 
are positively correlated with higher rates of urine 
oxalate, Ca2+, and Mg2+ excretion (35, 164). However, 
in later studies the incidence of uric acid, but not CaOx 
stones, was associated with obesity (165). The higher 
incidence of urolithiasis in men can be related to 
mutations in X-linked genes, such as X-linked 
recessive hypophosphatemic rickets and Dent’s 
disease,  where male haemizygotes exhibit 
hypercalciuria and nephrocalcinosis (2). However, 
these mutations are not responsible for urolithiasis in 
idiopathic cases. Experimentally, sex differences in 
oxalate urolithiasis were clearly demonstrated in rats 
treated with EG, where testosterone promoted and 

Figure 5.  A schematic presentation of ion transport(er)s in the 
basolateral (BLM) and apical (AM) membranes of 
kidney proximal tubules (PT). A. In physiological 
conditions, oxalate (Ox2-) and sulfate (SO4

2-) from 
blood are passively fi ltered in glomeruli (G) into 
glomerular fi ltrate (GF). SO4

2- and Na+ are actively 
reabsorbed from the glomerular fi ltrate by SLC13A1 
in the AM and returned to blood by the basolateral 
transporters SLC26A1 and SLC4A4 in exchange for 
HCO3

-. A minor part of the reabsorbed SO4
2- is used 

by the apical transporter SLC26A6 as a substrate 
in exchange for oxalate, which is then excreted in 
exchange for Cl-. Oxalate used in this way is fi nally 
eliminated from the body via urine. B. In case of 
hyperoxalemia, the oxalate transport changes; the 
excess oxalate is actively eliminated in co-ordinative 
actions of the basolateral SLC26A1 and apical 
SLC26A6 in exchange for SO4

2-, Cl-, HCO3
-, or 

OH-, depending on affi nity and/or concentration.
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estrogens inhibited the formation of oxalate stones 
(166). In rats, sex-related differences were evident 
already at the level of oxalate production in the liver, 
but these differences became evident only when the 
animals ingested the oxalate precursor EG, while 
under physiological conditions the urinary oxalate 
secretion was unaffected by androgens (167). 
Furthermore, the male-dominant incidence of 
urolithiasis may be related to the activity/expression 
of rate-limiting enzymes that contribute to oxalate 
synthesis in the respective organs, e.g., alcohol 
dehydrogenase 1 (ADH-1/Adh-1; EC 1.1.1.1), which 
catalyzes the conversion of EG to glycoaldehyde, and 
hydroxyacid oxidase (HAO-1/Hao-1, EC 1.1.3.15), 
which converts glycolate to glyoxylate. Thus, in both 
rat kidneys (168, 169) and liver (170-172) the Adh-1 
activity and its mRNA expression were found to be 
female-dominant due to stimulation by estrogens, 
whereas Hao-1 activity and its mRNA expression 
in rat liver and kidneys were found to be male-
dominant due to stimulation by androgens and 
inhibition by estrogens (167, 173, 174). Although 
the enzymatic level suggests that oxalate metabolism 
is largely controlled by androgens, ovariectomized 
and EG-treated female rats showed significantly 
higher urinary oxalate excretion, Ca2+ content and 
crystal deposition, and a higher expression of 
osteopontin mRNA in the kidneys, suggesting that 
female sex hormones may also affect the deposition 
of renal crystals on several levels (175).

The sex-related oxalate metabolism, urine oxalate 
excretion, and the rate of stone formation may be 
connected with the expression of specifi c transporters 
responsible for oxalate transport. Previous microarray 
studies in rat organs exhibited limited male-dominant 
sex differences in the expression of Sat-1 mRNA in 
the kidney cortex but not in the liver (176). However, 
real time RT-PCR data in the rat liver and kidney 
tissues showed an absence of signifi cant sex differences 
in Sat-1 mRNA expression, while Sat-1 protein 
expression and its activity, shown by Western blotting, 
immunocytochemistry, and transport studies in the 
same organs, were male-dominant, indicating a 
posttranscriptional regulation for this transporter. 
Additional experiments showed that, at least in the rat 
kidneys, the male-dominant sex differences in Sat-1 
protein expression were driven by the inhibitory 
effects of estrogens and progesterone (117). In mice, 
sex hormones may also infl uence the expression of 
DRA in the large intestine; the expression of DRA 
mRNA in the colon of adult animals was 134-fold 

higher than in prepubertal mice, possibly due to the 
up-regulating effects of sex hormones after the onset 
of puberty (121). Apart from the liver and kidneys, 
sex hormones can also affect oxalate traffi cking across 
the red blood cell membrane (RBC), which is most 
likely mediated by the anion exchanger AE3 (band 3; 
SLC4A3) (177, 178), with possible indirect 
consequences on stone formation in the affected 
individuals. A higher incidence of idiopathic 
nephrolithiasis was observed in male patients with 
abnormal oxalate transport in RBC (179). 

The above mentioned data suggested a more direct 
impact of sex hormones on oxalate urolithiasis via 
oxalate metabolism and/or transport. However, the 
role of sex hormones may be indirect, by affecting the 
levels of citrate and scavengers of ROS, whose 
beneficial effects on stone formation have been 
discussed earlier. Female urine has a higher amount 
of citrate compared to that in males, and female sex 
hormones exhibit a clear regulatory role in citrate 
excretion. That is why ovariectomy in rats reduces, 
while estrogen replacement increases urinary citrate 
concentrations (173, 174). Superoxide dismutase 1 
and 2 (SOD1 and SOD2) and catalase (CAT) mRNA 
expression is higher in the kidneys of female than of 
male rats. Furthermore, ovariectomy and testosterone 
treatment in female rats reduced the mRNA expression 
of all three enzymes. In contrast, male rats treated with 
estradiol showed an increased expression of SOD1, 
SOD2, and CAT, while castration up-regulated the 
expression of SOD2 and CAT, thus suggesting that 
female rats have a higher capability of coping with 
oxalate-induced oxidative stress (167).

In addition to sex hormones, other hormones and 
their receptors may also be indirectly tied to oxalate 
traffi cking in the organism. Notably, in rats during 
CRF, when oxalate secretion was partially redirected 
to the intestine, colonic oxalate secretion was regulated 
by angiotensin II (Ang II type I (AT1)) receptors. The 
expression of AT1 receptors and oxalate excretion was 
~2-fold higher in the colonic mucosa of rats suffering 
from CRF. Similar results were obtained by applying 
Ang II to cultured colonic cells. Furthermore, in a rat 
model of CRF, oxalate excretion in the colon could 
be reverted by administering the AT1 receptor 
antagonist losartan (93, 180). However, this effect was 
not oxalate specifi c and affected the traffi cking of 
several ion species, such as K+, Cl-, and urate across 
the colonic membranes (181). On the other hand, this 
effect was segment specific and occured in the 
proximal and distal colon, whereas the transport in the 
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jejunum and ileum remained unchanged, thus 
supporting the view that colon is the major substitute 
for diminished renal oxalate secretion during CRF 
(182). In addition, in rats having CRF and subsequently 
treated with oxalate, it was established that some 
degree of renal insuffi ciency was needed to activate 
AT1 receptors and increase colonic oxalate excretion. 
Treatment of healthy rats with oxalate led to increased 
colonic excretion without the activation of AT1 
receptors, thus indicating that the AT1 receptors may 
cause an additional severity in oxaluria (183). 

In addition to the hormonal causes of sex-
dependent oxaluria and nephrolithiasis, some vitamins 
can also be involved in these manifestations. Male and 
female rats that were denied vitamin B6 in their food 
for a period of 6 months showed no sex differences in 
the formation of renal stones (184). Furthermore, 
various toxic metals were found to infl uence the 
activity of Sat-1. Chromium and mercury interfered 
with Sat-1 and strongly reduced the transport of 
inorganic SO4

2-, whereas cadmium or lead had a weak 
inhibitory or no effect on the transport of inorganic 
SO4

2-, respectively (185). At the present, it is not 
known if these effects of toxic metals on anion 
transporters affect oxalate transport and/or the 
incidence of urolithiasis.

Recent studies pointed out the existing species 
differences in the activity of certain transporters, such 
as of CFEX in humans and mice. In mice, this 
transporter mediates a bidirectional electrogenic 
oxalate/Cl- exchange, while in humans, this exchange 
is electroneutral (186, 197). The antiporters in these 
two species also differ in anion selectivity; the mouse 
ortholog exhibits a higher affi nity for Cl- and SO4

2-, 
whereas both orthologs mediate electroneutral Cl-/
HCO3

-(OH-) exchange (186). Research on human 
SLC26A6 and its variants has revealed that possible 
subtle differences among variants may be at least 
partially responsible for susceptibility to oxalate 
urolithiasis (187).

Conclusions: directions for possible future research  

Although intensive research into urinary stone 
formation has been conducted since the middle of the 
20th century, many aspects of this research have been 
set aside or simply overlooked due to technical 
limitations. With recent advances in molecular 
biology, we are now able to broaden our perspective 
on this problem. Oxalate-related metabolic pathways 
in the organism have been well-described, and oxalate 
transport in the liver and kidneys has been revealed 

in great detail. However, its transport in the 
gastrointestinal tract needs additional clarifi cation. 
The only oxalate transporter with a clear role in the 
intestine is CFEX, which is responsible for oxalate 
secretion. On the other hand, the exact route of oxalate 
uptake from the intestinal lumen into the cells, and 
entry of oxalate into the blood stream, is still a matter 
of debate. It is of the outmost clinical importance to 
characterize the transporters and pathways responsible 
for the transepithelial movement of oxalate in the 
intestine. Furthermore, an increasing number of 
evidence supports the importance of sex hormones for 
the onset and development of oxalate urolithiasis and 
this could explain the reason and mechanics of the 
male-dominant incidence of oxalate urolithiasis in 
humans. Thus far, relevant research has been based 
on measuring differences of oxalate concentrations in 
blood and urine after loading subjects with oxalate, 
whereas the effects of sex hormones on various aspects 
of oxalate traffi cking, especially on the expression 
and/or activity of oxalate transporters, only recently 
became the focus of research. In addition to what is 
already known about sex differences in Sat-1, further 
research should be directed to discern the effects of 
sex hormones on other members of the SLC26 family, 
especially those expressed in organs vital for the 
generation and handling of oxalate, e.g., the small 
intestine, colon, liver, and kidneys. Furthermore, 
attention should be devoted to other aetiological 
factors, as well as promoters and inhibitors (listed in 
Table 1) of urolithiasis.
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ABBREVIATIONS

ADH-1, alcohol dehydrogenase 1; AGAT, alanine 
glyoxylate aminotransferase; ALDH, aldehyde 
dehydrogenase; AOX, aldehyde oxidase; AT1, 
angiotensin type I receptor; BBM, brush border 
membrane; BLM, basolateral membrane; CAI, crystal 
adhesion inhibitor; CAT, catalase; CaOx, calcium 
oxalate; CaP, calcium phosphate; CFEX, chloride/
formate exchanger; CRF, chronic renal failure; DIDS, 
4,4’-diisothiocyano-2,2’-stilbenedisulfonic acid; 
GRHPR, glyoxylate reductase/hydroxypyruvate 
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reductase; EG, ethylene glycol; DRA, down-regulated 
in adenoma; HCBD, hexachloro-1,3-butadiene; HAO-
1 (Hao-1 in animals), hydroxyacid oxidase 1 (glycolate 
oxidase); ITI, inter-α-inhibitor; KSD, kidney stone 
disease; KO mice, knockout mice; KOx, potassium 
oxalate; LDH, lactate dehydrogenase; LLC-PK1, pig 
kidney epithelial cell line; MDCK, Madin-Darby 
canine kidney; MCP-1, monocyte chemoattractant 
protein 1; NHE3, sodium-proton exchanger 3; PAH, 
p-aminohippurate; PCMB, p-chloromercuribenzoic 
acid; PAT-1, putative anion transporter 1; SAT-1 (Sat-
1 in animals), sulfate anion transporter 1; SITS, 4-
acetoamido-4-isothiocyano 2, stilbene 2,2’ disulfonic 
acid; RBC, red blood cells; SOD1 and 2, superoxide 
dismutase 1 and 2; TAT-1, Testis anion transporter 1; 
WT mice, wild type mice; XO, xantine oxidase 
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Sažetak

OKSALAT – OD OKOLIŠA DO BUBREŽNIH KAMENACA

Oksalatna urolitijaza (nefrolitijaza) najučestaliji je tip bolesti bubrežnih kamenaca. Rezultati epidemioloških 
istraživanja pokazali su da je urolitijaza približno dvostruko učestalija u muškaraca nego u žena, ali osnovni 
mehanizam nastanka ove spolno-ovisne prevalencije nije razjašnjen. Oksalat u organizmu dijelom potječe 
iz hrane (egzogeni oksalat), a glavninom nastaje kao konačni produkt metabolizma raznih preteča u jetrima 
(endogeni oksalat). Na koncentraciju oksalata u plazmi i urinu utječu razne tvari iz hrane, koje mogu 
pozitivno ili negativno djelovati na apsorpciju, metaboličke puteve i/ili izlučivanje oksalata. Oksalat se iz 
organizma izlučuje u manjem obimu putem žuči u crijevo, a glavninom bubrezima. U bubrezima, pri 
odgovarajućim uvjetima kao što su visoka koncentracija oksalata i oštećenje epitela bubrežnih kanalića, 
oksalat može precipitirati i time potaknuti stvaranje kamenaca. Rezultati novih istraživanja upućuju na 
važnost membranskih prijenosnika otopljenih tvari (SoLute Carriers) iz obitelji 26 (SLC26) za prijenos 
oksalata u specifi čnim organima. Smatra se da dva člana ove obitelji: prijenosnik sulfatnog aniona (Sulfate 
Anion Transporter 1; SAT-1; SLC26A1) i izmjenjivač klora i mravlje kiseline (Chloride/Formate EXchanger; 
CFEX; SLC26A6), imaju značajnu ulogu u prijenosu oksalata u crijevima, jetrima i bubrezima; 
hiperoksalurija i nefrolitijaza utvrđeni su pri slaboj aktivnosti ili nedostatku SAT-1 i CFEX proteina. 
Međutim, još uvijek postoje brojne nejasnoće glede prijenosa oksalata u navedenim organima, mehanizma 
nastanka spolnih razlika u nefrolitijazi i utjecaja spolnih hormona na ekspresiju proteina i mRNA za 
navedene prijenosnike.

KLJUČNE RIJEČI: bolest bubrežnih kamenaca, CFEX, kalcij, membranski prijenosnici, nefrolitijaza, 
organski anioni, SAT-1, SLC26A1, SLC26A6, spolne razlike, urolitijaza
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